Logo Search packages:      
Sourcecode: kfreebsd-7 version File versions  Download package

mpt_cam.c

/*-
 * FreeBSD/CAM specific routines for LSI '909 FC  adapters.
 * FreeBSD Version.
 *
 * Copyright (c)  2000, 2001 by Greg Ansley
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice immediately at the beginning of the file, without modification,
 *    this list of conditions, and the following disclaimer.
 * 2. The name of the author may not be used to endorse or promote products
 *    derived from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 */
/*-
 * Copyright (c) 2002, 2006 by Matthew Jacob
 * All rights reserved.
 * 
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
 *    substantially similar to the "NO WARRANTY" disclaimer below
 *    ("Disclaimer") and any redistribution must be conditioned upon including
 *    a substantially similar Disclaimer requirement for further binary
 *    redistribution.
 * 3. Neither the names of the above listed copyright holders nor the names
 *    of any contributors may be used to endorse or promote products derived
 *    from this software without specific prior written permission.
 * 
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF THE COPYRIGHT
 * OWNER OR CONTRIBUTOR IS ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 * Support from Chris Ellsworth in order to make SAS adapters work
 * is gratefully acknowledged.
 *
 * Support from LSI-Logic has also gone a great deal toward making this a
 * workable subsystem and is gratefully acknowledged.
 */
/*-
 * Copyright (c) 2004, Avid Technology, Inc. and its contributors.
 * Copyright (c) 2005, WHEEL Sp. z o.o.
 * Copyright (c) 2004, 2005 Justin T. Gibbs
 * All rights reserved.
 * 
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
 *    substantially similar to the "NO WARRANTY" disclaimer below
 *    ("Disclaimer") and any redistribution must be conditioned upon including
 *    a substantially similar Disclaimer requirement for further binary
 *    redistribution.
 * 3. Neither the names of the above listed copyright holders nor the names
 *    of any contributors may be used to endorse or promote products derived
 *    from this software without specific prior written permission.
 * 
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF THE COPYRIGHT
 * OWNER OR CONTRIBUTOR IS ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */
#include <sys/cdefs.h>
__FBSDID("$FreeBSD: src/sys/dev/mpt/mpt_cam.c,v 1.61.2.1 2007/10/19 15:22:24 scottl Exp $");

#include <dev/mpt/mpt.h>
#include <dev/mpt/mpt_cam.h>
#include <dev/mpt/mpt_raid.h>

#include "dev/mpt/mpilib/mpi_ioc.h" /* XXX Fix Event Handling!!! */
#include "dev/mpt/mpilib/mpi_init.h"
#include "dev/mpt/mpilib/mpi_targ.h"
#include "dev/mpt/mpilib/mpi_fc.h"
#include "dev/mpt/mpilib/mpi_sas.h"
#if __FreeBSD_version >= 500000
#include <sys/sysctl.h>
#endif
#include <sys/callout.h>
#include <sys/kthread.h>

#if __FreeBSD_version >= 700025
#ifndef     CAM_NEW_TRAN_CODE
#define     CAM_NEW_TRAN_CODE 1
#endif
#endif

static void mpt_poll(struct cam_sim *);
static timeout_t mpt_timeout;
static void mpt_action(struct cam_sim *, union ccb *);
static int
mpt_get_spi_settings(struct mpt_softc *, struct ccb_trans_settings *);
static void mpt_setwidth(struct mpt_softc *, int, int);
static void mpt_setsync(struct mpt_softc *, int, int, int);
static int mpt_update_spi_config(struct mpt_softc *, int);
static void mpt_calc_geometry(struct ccb_calc_geometry *ccg, int extended);

static mpt_reply_handler_t mpt_scsi_reply_handler;
static mpt_reply_handler_t mpt_scsi_tmf_reply_handler;
static mpt_reply_handler_t mpt_fc_els_reply_handler;
static int mpt_scsi_reply_frame_handler(struct mpt_softc *, request_t *,
                              MSG_DEFAULT_REPLY *);
static int mpt_bus_reset(struct mpt_softc *, target_id_t, lun_id_t, int);
static int mpt_fc_reset_link(struct mpt_softc *, int);

static int mpt_spawn_recovery_thread(struct mpt_softc *mpt);
static void mpt_terminate_recovery_thread(struct mpt_softc *mpt);
static void mpt_recovery_thread(void *arg);
static void mpt_recover_commands(struct mpt_softc *mpt);

static int mpt_scsi_send_tmf(struct mpt_softc *, u_int, u_int, u_int,
    u_int, u_int, u_int, int);

static void mpt_fc_post_els(struct mpt_softc *mpt, request_t *, int);
static void mpt_post_target_command(struct mpt_softc *, request_t *, int);
static int mpt_add_els_buffers(struct mpt_softc *mpt);
static int mpt_add_target_commands(struct mpt_softc *mpt);
static int mpt_enable_lun(struct mpt_softc *, target_id_t, lun_id_t);
static int mpt_disable_lun(struct mpt_softc *, target_id_t, lun_id_t);
static void mpt_target_start_io(struct mpt_softc *, union ccb *);
static cam_status mpt_abort_target_ccb(struct mpt_softc *, union ccb *);
static int mpt_abort_target_cmd(struct mpt_softc *, request_t *);
static void mpt_scsi_tgt_status(struct mpt_softc *, union ccb *, request_t *,
    uint8_t, uint8_t const *);
static void
mpt_scsi_tgt_tsk_mgmt(struct mpt_softc *, request_t *, mpt_task_mgmt_t,
    tgt_resource_t *, int);
static void mpt_tgt_dump_tgt_state(struct mpt_softc *, request_t *);
static void mpt_tgt_dump_req_state(struct mpt_softc *, request_t *);
static mpt_reply_handler_t mpt_scsi_tgt_reply_handler;
static mpt_reply_handler_t mpt_sata_pass_reply_handler;

static uint32_t scsi_io_handler_id = MPT_HANDLER_ID_NONE;
static uint32_t scsi_tmf_handler_id = MPT_HANDLER_ID_NONE;
static uint32_t fc_els_handler_id = MPT_HANDLER_ID_NONE;
static uint32_t sata_pass_handler_id = MPT_HANDLER_ID_NONE;

static mpt_probe_handler_t    mpt_cam_probe;
static mpt_attach_handler_t   mpt_cam_attach;
static mpt_enable_handler_t   mpt_cam_enable;
static mpt_ready_handler_t    mpt_cam_ready;
static mpt_event_handler_t    mpt_cam_event;
static mpt_reset_handler_t    mpt_cam_ioc_reset;
static mpt_detach_handler_t   mpt_cam_detach;

static struct mpt_personality mpt_cam_personality =
{
      .name       = "mpt_cam",
      .probe            = mpt_cam_probe,
      .attach           = mpt_cam_attach,
      .enable           = mpt_cam_enable,
      .ready            = mpt_cam_ready,
      .event            = mpt_cam_event,
      .reset            = mpt_cam_ioc_reset,
      .detach           = mpt_cam_detach,
};

DECLARE_MPT_PERSONALITY(mpt_cam, SI_ORDER_SECOND);
MODULE_DEPEND(mpt_cam, cam, 1, 1, 1);

int mpt_enable_sata_wc = -1;
TUNABLE_INT("hw.mpt.enable_sata_wc", &mpt_enable_sata_wc);

int
mpt_cam_probe(struct mpt_softc *mpt)
{
      int role;

      /*
       * Only attach to nodes that support the initiator or target role
       * (or want to) or have RAID physical devices that need CAM pass-thru
       * support.
       */
      if (mpt->do_cfg_role) {
            role = mpt->cfg_role;
      } else {
            role = mpt->role;
      }
      if ((role & (MPT_ROLE_TARGET|MPT_ROLE_INITIATOR)) != 0 ||
          (mpt->ioc_page2 != NULL && mpt->ioc_page2->MaxPhysDisks != 0)) {
            return (0);
      }
      return (ENODEV);
}

int
mpt_cam_attach(struct mpt_softc *mpt)
{
      struct cam_devq *devq;
      mpt_handler_t      handler;
      int          maxq;
      int          error;

      MPT_LOCK(mpt);
      TAILQ_INIT(&mpt->request_timeout_list);
      maxq = (mpt->ioc_facts.GlobalCredits < MPT_MAX_REQUESTS(mpt))?
          mpt->ioc_facts.GlobalCredits : MPT_MAX_REQUESTS(mpt);

      handler.reply_handler = mpt_scsi_reply_handler;
      error = mpt_register_handler(mpt, MPT_HANDLER_REPLY, handler,
                             &scsi_io_handler_id);
      if (error != 0) {
            MPT_UNLOCK(mpt);
            goto cleanup;
      }

      handler.reply_handler = mpt_scsi_tmf_reply_handler;
      error = mpt_register_handler(mpt, MPT_HANDLER_REPLY, handler,
                             &scsi_tmf_handler_id);
      if (error != 0) {
            MPT_UNLOCK(mpt);
            goto cleanup;
      }

      /*
       * If we're fibre channel and could support target mode, we register
       * an ELS reply handler and give it resources.
       */
      if (mpt->is_fc && (mpt->role & MPT_ROLE_TARGET) != 0) {
            handler.reply_handler = mpt_fc_els_reply_handler;
            error = mpt_register_handler(mpt, MPT_HANDLER_REPLY, handler,
                &fc_els_handler_id);
            if (error != 0) {
                  MPT_UNLOCK(mpt);
                  goto cleanup;
            }
            if (mpt_add_els_buffers(mpt) == FALSE) {
                  error = ENOMEM;
                  MPT_UNLOCK(mpt);
                  goto cleanup;
            }
            maxq -= mpt->els_cmds_allocated;
      }

      /*
       * If we support target mode, we register a reply handler for it,
       * but don't add command resources until we actually enable target
       * mode.
       */
      if (mpt->is_fc && (mpt->role & MPT_ROLE_TARGET) != 0) {
            handler.reply_handler = mpt_scsi_tgt_reply_handler;
            error = mpt_register_handler(mpt, MPT_HANDLER_REPLY, handler,
                &mpt->scsi_tgt_handler_id);
            if (error != 0) {
                  MPT_UNLOCK(mpt);
                  goto cleanup;
            }
      }

      if (mpt->is_sas) {
            handler.reply_handler = mpt_sata_pass_reply_handler;
            error = mpt_register_handler(mpt, MPT_HANDLER_REPLY, handler,
                &sata_pass_handler_id);
            if (error != 0) {
                  MPT_UNLOCK(mpt);
                  goto cleanup;
            }
      }

      /*
       * We keep one request reserved for timeout TMF requests.
       */
      mpt->tmf_req = mpt_get_request(mpt, FALSE);
      if (mpt->tmf_req == NULL) {
            mpt_prt(mpt, "Unable to allocate dedicated TMF request!\n");
            error = ENOMEM;
            MPT_UNLOCK(mpt);
            goto cleanup;
      }

      /*
       * Mark the request as free even though not on the free list.
       * There is only one TMF request allowed to be outstanding at
       * a time and the TMF routines perform their own allocation
       * tracking using the standard state flags.
       */
      mpt->tmf_req->state = REQ_STATE_FREE;
      maxq--;

      /*
       * The rest of this is CAM foo, for which we need to drop our lock
       */
      MPT_UNLOCK(mpt);

      if (mpt_spawn_recovery_thread(mpt) != 0) {
            mpt_prt(mpt, "Unable to spawn recovery thread!\n");
            error = ENOMEM;
            goto cleanup;
      }

      /*
       * Create the device queue for our SIM(s).
       */
      devq = cam_simq_alloc(maxq);
      if (devq == NULL) {
            mpt_prt(mpt, "Unable to allocate CAM SIMQ!\n");
            error = ENOMEM;
            goto cleanup;
      }

      /*
       * Construct our SIM entry.
       */
      mpt->sim =
          mpt_sim_alloc(mpt_action, mpt_poll, "mpt", mpt, 1, maxq, devq);
      if (mpt->sim == NULL) {
            mpt_prt(mpt, "Unable to allocate CAM SIM!\n");
            cam_simq_free(devq);
            error = ENOMEM;
            goto cleanup;
      }

      /*
       * Register exactly this bus.
       */
      MPT_LOCK(mpt);
      if (xpt_bus_register(mpt->sim, mpt->dev, 0) != CAM_SUCCESS) {
            mpt_prt(mpt, "Bus registration Failed!\n");
            error = ENOMEM;
            MPT_UNLOCK(mpt);
            goto cleanup;
      }

      if (xpt_create_path(&mpt->path, NULL, cam_sim_path(mpt->sim),
          CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD) != CAM_REQ_CMP) {
            mpt_prt(mpt, "Unable to allocate Path!\n");
            error = ENOMEM;
            MPT_UNLOCK(mpt);
            goto cleanup;
      }
      MPT_UNLOCK(mpt);

      /*
       * Only register a second bus for RAID physical
       * devices if the controller supports RAID.
       */
      if (mpt->ioc_page2 == NULL || mpt->ioc_page2->MaxPhysDisks == 0) {
            return (0);
      }

      /*
       * Create a "bus" to export all hidden disks to CAM.
       */
      mpt->phydisk_sim =
          mpt_sim_alloc(mpt_action, mpt_poll, "mpt", mpt, 1, maxq, devq);
      if (mpt->phydisk_sim == NULL) {
            mpt_prt(mpt, "Unable to allocate Physical Disk CAM SIM!\n");
            error = ENOMEM;
            goto cleanup;
      }

      /*
       * Register this bus.
       */
      MPT_LOCK(mpt);
      if (xpt_bus_register(mpt->phydisk_sim, mpt->dev, 1) != CAM_SUCCESS) {
            mpt_prt(mpt, "Physical Disk Bus registration Failed!\n");
            error = ENOMEM;
            MPT_UNLOCK(mpt);
            goto cleanup;
      }

      if (xpt_create_path(&mpt->phydisk_path, NULL,
          cam_sim_path(mpt->phydisk_sim),
          CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD) != CAM_REQ_CMP) {
            mpt_prt(mpt, "Unable to allocate Physical Disk Path!\n");
            error = ENOMEM;
            MPT_UNLOCK(mpt);
            goto cleanup;
      }
      MPT_UNLOCK(mpt);
      mpt_lprt(mpt, MPT_PRT_DEBUG, "attached cam\n");
      return (0);

cleanup:
      mpt_cam_detach(mpt);
      return (error);
}

/*
 * Read FC configuration information
 */
static int
mpt_read_config_info_fc(struct mpt_softc *mpt)
{
      char *topology = NULL;
      int rv;

      rv = mpt_read_cfg_header(mpt, MPI_CONFIG_PAGETYPE_FC_PORT, 0,
          0, &mpt->mpt_fcport_page0.Header, FALSE, 5000);
      if (rv) {
            return (-1);
      }
      mpt_lprt(mpt, MPT_PRT_DEBUG, "FC Port Page 0 Header: %x %x %x %x\n",
             mpt->mpt_fcport_page0.Header.PageVersion,
             mpt->mpt_fcport_page0.Header.PageLength,
             mpt->mpt_fcport_page0.Header.PageNumber,
             mpt->mpt_fcport_page0.Header.PageType);


      rv = mpt_read_cur_cfg_page(mpt, 0, &mpt->mpt_fcport_page0.Header,
          sizeof(mpt->mpt_fcport_page0), FALSE, 5000);
      if (rv) {
            mpt_prt(mpt, "failed to read FC Port Page 0\n");
            return (-1);
      }

      mpt->mpt_fcport_speed = mpt->mpt_fcport_page0.CurrentSpeed;

      switch (mpt->mpt_fcport_page0.Flags &
          MPI_FCPORTPAGE0_FLAGS_ATTACH_TYPE_MASK) {
      case MPI_FCPORTPAGE0_FLAGS_ATTACH_NO_INIT:
            mpt->mpt_fcport_speed = 0;
            topology = "<NO LOOP>";
            break;
      case MPI_FCPORTPAGE0_FLAGS_ATTACH_POINT_TO_POINT:
            topology = "N-Port";
            break;
      case MPI_FCPORTPAGE0_FLAGS_ATTACH_PRIVATE_LOOP:
            topology = "NL-Port";
            break;
      case MPI_FCPORTPAGE0_FLAGS_ATTACH_FABRIC_DIRECT:
            topology = "F-Port";
            break;
      case MPI_FCPORTPAGE0_FLAGS_ATTACH_PUBLIC_LOOP:
            topology = "FL-Port";
            break;
      default:
            mpt->mpt_fcport_speed = 0;
            topology = "?";
            break;
      }

      mpt_lprt(mpt, MPT_PRT_INFO,
          "FC Port Page 0: Topology <%s> WWNN 0x%08x%08x WWPN 0x%08x%08x "
          "Speed %u-Gbit\n", topology,
          mpt->mpt_fcport_page0.WWNN.High,
          mpt->mpt_fcport_page0.WWNN.Low,
          mpt->mpt_fcport_page0.WWPN.High,
          mpt->mpt_fcport_page0.WWPN.Low,
          mpt->mpt_fcport_speed);
#if __FreeBSD_version >= 500000
      MPT_UNLOCK(mpt);
      {
            struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(mpt->dev);
            struct sysctl_oid *tree = device_get_sysctl_tree(mpt->dev);

            snprintf(mpt->scinfo.fc.wwnn,
                sizeof (mpt->scinfo.fc.wwnn), "0x%08x%08x",
                mpt->mpt_fcport_page0.WWNN.High,
                mpt->mpt_fcport_page0.WWNN.Low);

            snprintf(mpt->scinfo.fc.wwpn,
                sizeof (mpt->scinfo.fc.wwpn), "0x%08x%08x",
                mpt->mpt_fcport_page0.WWPN.High,
                mpt->mpt_fcport_page0.WWPN.Low);

            SYSCTL_ADD_STRING(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
                   "wwnn", CTLFLAG_RD, mpt->scinfo.fc.wwnn, 0,
                   "World Wide Node Name");

            SYSCTL_ADD_STRING(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
                   "wwpn", CTLFLAG_RD, mpt->scinfo.fc.wwpn, 0,
                   "World Wide Port Name");

      }
      MPT_LOCK(mpt);
#endif
      return (0);
}

/*
 * Set FC configuration information.
 */
static int
mpt_set_initial_config_fc(struct mpt_softc *mpt)
{
      
      CONFIG_PAGE_FC_PORT_1 fc;
      U32 fl;
      int r, doit = 0;
      int role;

      r = mpt_read_cfg_header(mpt, MPI_CONFIG_PAGETYPE_FC_PORT, 1, 0,
          &fc.Header, FALSE, 5000);
      if (r) {
            mpt_prt(mpt, "failed to read FC page 1 header\n");
            return (mpt_fc_reset_link(mpt, 1));
      }

      r = mpt_read_cfg_page(mpt, MPI_CONFIG_ACTION_PAGE_READ_NVRAM, 0,
          &fc.Header, sizeof (fc), FALSE, 5000);
      if (r) {
            mpt_prt(mpt, "failed to read FC page 1\n");
            return (mpt_fc_reset_link(mpt, 1));
      }

      /*
       * Check our flags to make sure we support the role we want.
       */
      doit = 0;
      role = 0;
      fl = le32toh(fc.Flags);;

      if (fl & MPI_FCPORTPAGE1_FLAGS_PROT_FCP_INIT) {
            role |= MPT_ROLE_INITIATOR;
      }
      if (fl & MPI_FCPORTPAGE1_FLAGS_PROT_FCP_TARG) {
            role |= MPT_ROLE_TARGET;
      }

      fl &= ~MPI_FCPORTPAGE1_FLAGS_PROT_MASK;

      if (mpt->do_cfg_role == 0) {
            role = mpt->cfg_role;
      } else {
            mpt->do_cfg_role = 0;
      }

      if (role != mpt->cfg_role) {
            if (mpt->cfg_role & MPT_ROLE_INITIATOR) {
                  if ((role & MPT_ROLE_INITIATOR) == 0) {
                        mpt_prt(mpt, "adding initiator role\n");
                        fl |= MPI_FCPORTPAGE1_FLAGS_PROT_FCP_INIT;
                        doit++;
                  } else {
                        mpt_prt(mpt, "keeping initiator role\n");
                  }
            } else if (role & MPT_ROLE_INITIATOR) {
                  mpt_prt(mpt, "removing initiator role\n");
                  doit++;
            }
            if (mpt->cfg_role & MPT_ROLE_TARGET) {
                  if ((role & MPT_ROLE_TARGET) == 0) {
                        mpt_prt(mpt, "adding target role\n");
                        fl |= MPI_FCPORTPAGE1_FLAGS_PROT_FCP_TARG;
                        doit++;
                  } else {
                        mpt_prt(mpt, "keeping target role\n");
                  }
            } else if (role & MPT_ROLE_TARGET) {
                  mpt_prt(mpt, "removing target role\n");
                  doit++;
            }
            mpt->role = mpt->cfg_role;
      }

      if (fl & MPI_FCPORTPAGE1_FLAGS_PROT_FCP_TARG) {
            if ((fl & MPI_FCPORTPAGE1_FLAGS_TARGET_MODE_OXID) == 0) {
                  mpt_prt(mpt, "adding OXID option\n");
                  fl |= MPI_FCPORTPAGE1_FLAGS_TARGET_MODE_OXID;
                  doit++;
            }
      }

      if (doit) {
            fc.Flags = htole32(fl);
            r = mpt_write_cfg_page(mpt,
                MPI_CONFIG_ACTION_PAGE_WRITE_NVRAM, 0, &fc.Header,
                sizeof(fc), FALSE, 5000);
            if (r != 0) {
                  mpt_prt(mpt, "failed to update NVRAM with changes\n");
                  return (0);
            }
            mpt_prt(mpt, "NOTE: NVRAM changes will not take "
                "effect until next reboot or IOC reset\n");
      }
      return (0);
}

static int
mptsas_sas_io_unit_pg0(struct mpt_softc *mpt, struct mptsas_portinfo *portinfo)
{
      ConfigExtendedPageHeader_t hdr;
      struct mptsas_phyinfo *phyinfo;
      SasIOUnitPage0_t *buffer;
      int error, len, i;

      error = mpt_read_extcfg_header(mpt, MPI_SASIOUNITPAGE0_PAGEVERSION,
                               0, 0, MPI_CONFIG_EXTPAGETYPE_SAS_IO_UNIT,
                               &hdr, 0, 10000);
      if (error)
            goto out;
      if (hdr.ExtPageLength == 0) {
            error = ENXIO;
            goto out;
      }

      len = hdr.ExtPageLength * 4;
      buffer = malloc(len, M_DEVBUF, M_NOWAIT|M_ZERO);
      if (buffer == NULL) {
            error = ENOMEM;
            goto out;
      }

      error = mpt_read_extcfg_page(mpt, MPI_CONFIG_ACTION_PAGE_READ_CURRENT,
                             0, &hdr, buffer, len, 0, 10000);
      if (error) {
            free(buffer, M_DEVBUF);
            goto out;
      }

      portinfo->num_phys = buffer->NumPhys;
      portinfo->phy_info = malloc(sizeof(*portinfo->phy_info) *
          portinfo->num_phys, M_DEVBUF, M_NOWAIT|M_ZERO);
      if (portinfo->phy_info == NULL) {
            free(buffer, M_DEVBUF);
            error = ENOMEM;
            goto out;
      }

      for (i = 0; i < portinfo->num_phys; i++) {
            phyinfo = &portinfo->phy_info[i];
            phyinfo->phy_num = i;
            phyinfo->port_id = buffer->PhyData[i].Port;
            phyinfo->negotiated_link_rate =
                buffer->PhyData[i].NegotiatedLinkRate;
            phyinfo->handle =
                le16toh(buffer->PhyData[i].ControllerDevHandle);
      }

      free(buffer, M_DEVBUF);
out:
      return (error);
}

static int
mptsas_sas_phy_pg0(struct mpt_softc *mpt, struct mptsas_phyinfo *phy_info,
      uint32_t form, uint32_t form_specific)
{
      ConfigExtendedPageHeader_t hdr;
      SasPhyPage0_t *buffer;
      int error;

      error = mpt_read_extcfg_header(mpt, MPI_SASPHY0_PAGEVERSION, 0, 0,
                               MPI_CONFIG_EXTPAGETYPE_SAS_PHY, &hdr,
                               0, 10000);
      if (error)
            goto out;
      if (hdr.ExtPageLength == 0) {
            error = ENXIO;
            goto out;
      }

      buffer = malloc(sizeof(SasPhyPage0_t), M_DEVBUF, M_NOWAIT|M_ZERO);
      if (buffer == NULL) {
            error = ENOMEM;
            goto out;
      }

      error = mpt_read_extcfg_page(mpt, MPI_CONFIG_ACTION_PAGE_READ_CURRENT,
                             form + form_specific, &hdr, buffer,
                             sizeof(SasPhyPage0_t), 0, 10000);
      if (error) {
            free(buffer, M_DEVBUF);
            goto out;
      }

      phy_info->hw_link_rate = buffer->HwLinkRate;
      phy_info->programmed_link_rate = buffer->ProgrammedLinkRate;
      phy_info->identify.dev_handle = le16toh(buffer->OwnerDevHandle);
      phy_info->attached.dev_handle = le16toh(buffer->AttachedDevHandle);

      free(buffer, M_DEVBUF);
out:
      return (error);
}

static int
mptsas_sas_device_pg0(struct mpt_softc *mpt, struct mptsas_devinfo *device_info,
      uint32_t form, uint32_t form_specific)
{
      ConfigExtendedPageHeader_t hdr;
      SasDevicePage0_t *buffer;
      uint64_t sas_address;
      int error = 0;

      bzero(device_info, sizeof(*device_info));
      error = mpt_read_extcfg_header(mpt, MPI_SASDEVICE0_PAGEVERSION, 0, 0,
                               MPI_CONFIG_EXTPAGETYPE_SAS_DEVICE,
                               &hdr, 0, 10000);
      if (error)
            goto out;
      if (hdr.ExtPageLength == 0) {
            error = ENXIO;
            goto out;
      }

      buffer = malloc(sizeof(SasDevicePage0_t), M_DEVBUF, M_NOWAIT|M_ZERO);
      if (buffer == NULL) {
            error = ENOMEM;
            goto out;
      }

      error = mpt_read_extcfg_page(mpt, MPI_CONFIG_ACTION_PAGE_READ_CURRENT,
                             form + form_specific, &hdr, buffer,
                             sizeof(SasDevicePage0_t), 0, 10000);
      if (error) {
            free(buffer, M_DEVBUF);
            goto out;
      }

      device_info->dev_handle = le16toh(buffer->DevHandle);
      device_info->parent_dev_handle = le16toh(buffer->ParentDevHandle);
      device_info->enclosure_handle = le16toh(buffer->EnclosureHandle);
      device_info->slot = le16toh(buffer->Slot);
      device_info->phy_num = buffer->PhyNum;
      device_info->physical_port = buffer->PhysicalPort;
      device_info->target_id = buffer->TargetID;
      device_info->bus = buffer->Bus;
      bcopy(&buffer->SASAddress, &sas_address, sizeof(uint64_t));
      device_info->sas_address = le64toh(sas_address);
      device_info->device_info = le32toh(buffer->DeviceInfo);

      free(buffer, M_DEVBUF);
out:
      return (error);
}

/*
 * Read SAS configuration information. Nothing to do yet.
 */
static int
mpt_read_config_info_sas(struct mpt_softc *mpt)
{
      struct mptsas_portinfo *portinfo;
      struct mptsas_phyinfo *phyinfo;
      int error, i;

      portinfo = malloc(sizeof(*portinfo), M_DEVBUF, M_NOWAIT|M_ZERO);
      if (portinfo == NULL)
            return (ENOMEM);

      error = mptsas_sas_io_unit_pg0(mpt, portinfo);
      if (error) {
            free(portinfo, M_DEVBUF);
            return (0);
      }

      for (i = 0; i < portinfo->num_phys; i++) {
            phyinfo = &portinfo->phy_info[i];
            error = mptsas_sas_phy_pg0(mpt, phyinfo,
                (MPI_SAS_PHY_PGAD_FORM_PHY_NUMBER <<
                MPI_SAS_PHY_PGAD_FORM_SHIFT), i);
            if (error)
                  break;
            error = mptsas_sas_device_pg0(mpt, &phyinfo->identify,
                (MPI_SAS_DEVICE_PGAD_FORM_HANDLE <<
                MPI_SAS_DEVICE_PGAD_FORM_SHIFT),
                phyinfo->handle);
            if (error)
                  break;
            phyinfo->identify.phy_num = phyinfo->phy_num = i;
            if (phyinfo->attached.dev_handle)
                  error = mptsas_sas_device_pg0(mpt,
                      &phyinfo->attached,
                      (MPI_SAS_DEVICE_PGAD_FORM_HANDLE <<
                      MPI_SAS_DEVICE_PGAD_FORM_SHIFT),
                      phyinfo->attached.dev_handle);
            if (error)
                  break;
      }
      mpt->sas_portinfo = portinfo;
      return (0);
}

static void
mptsas_set_sata_wc(struct mpt_softc *mpt, struct mptsas_devinfo *devinfo,
      int enabled)
{
      SataPassthroughRequest_t      *pass;
      request_t *req;
      int error, status;

      req = mpt_get_request(mpt, 0);
      if (req == NULL)
            return;

      pass = req->req_vbuf;
      bzero(pass, sizeof(SataPassthroughRequest_t));
      pass->Function = MPI_FUNCTION_SATA_PASSTHROUGH;
      pass->TargetID = devinfo->target_id;
      pass->Bus = devinfo->bus;
      pass->PassthroughFlags = 0;
      pass->ConnectionRate = MPI_SATA_PT_REQ_CONNECT_RATE_NEGOTIATED;
      pass->DataLength = 0;
      pass->MsgContext = htole32(req->index | sata_pass_handler_id);
      pass->CommandFIS[0] = 0x27;
      pass->CommandFIS[1] = 0x80;
      pass->CommandFIS[2] = 0xef;
      pass->CommandFIS[3] = (enabled) ? 0x02 : 0x82;
      pass->CommandFIS[7] = 0x40;
      pass->CommandFIS[15] = 0x08;

      mpt_check_doorbell(mpt);
      mpt_send_cmd(mpt, req);
      error = mpt_wait_req(mpt, req, REQ_STATE_DONE, REQ_STATE_DONE, 0,
                       10 * 1000);
      if (error) {
            mpt_free_request(mpt, req);
            printf("error %d sending passthrough\n", error);
            return;
      }

      status = le16toh(req->IOCStatus);
      if (status != MPI_IOCSTATUS_SUCCESS) {
            mpt_free_request(mpt, req);
            printf("IOCSTATUS %d\n", status);
            return;
      }

      mpt_free_request(mpt, req);
}

/*
 * Set SAS configuration information. Nothing to do yet.
 */
static int
mpt_set_initial_config_sas(struct mpt_softc *mpt)
{
      struct mptsas_phyinfo *phyinfo;
      int i;

      if ((mpt_enable_sata_wc != -1) && (mpt->sas_portinfo != NULL)) {
            for (i = 0; i < mpt->sas_portinfo->num_phys; i++) {
                  phyinfo = &mpt->sas_portinfo->phy_info[i];
                  if (phyinfo->attached.dev_handle == 0)
                        continue;
                  if ((phyinfo->attached.device_info &
                      MPI_SAS_DEVICE_INFO_SATA_DEVICE) == 0)
                        continue;
                  if (bootverbose)
                        device_printf(mpt->dev,
                            "%sabling SATA WC on phy %d\n",
                            (mpt_enable_sata_wc) ? "En" : "Dis", i);
                  mptsas_set_sata_wc(mpt, &phyinfo->attached,
                                 mpt_enable_sata_wc);
            }
      }

      return (0);
}

static int
mpt_sata_pass_reply_handler(struct mpt_softc *mpt, request_t *req,
 uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame)
{
      if (req != NULL) {

            if (reply_frame != NULL) {
                  MSG_SATA_PASSTHROUGH_REQUEST *pass;
                  MSG_SATA_PASSTHROUGH_REPLY *reply;

                  pass = (MSG_SATA_PASSTHROUGH_REQUEST *)req->req_vbuf;
                  reply = (MSG_SATA_PASSTHROUGH_REPLY *)reply_frame;
                  req->IOCStatus = le16toh(reply_frame->IOCStatus);
            }
            req->state &= ~REQ_STATE_QUEUED;
            req->state |= REQ_STATE_DONE;
            TAILQ_REMOVE(&mpt->request_pending_list, req, links);
            if ((req->state & REQ_STATE_NEED_WAKEUP) != 0) {
                  wakeup(req);
            } else if ((req->state & REQ_STATE_TIMEDOUT) != 0) {
                  /*
                   * Whew- we can free this request (late completion)
                   */
                  mpt_free_request(mpt, req);
            }
      }

      return (TRUE);
}

/*
 * Read SCSI configuration information
 */
static int
mpt_read_config_info_spi(struct mpt_softc *mpt)
{
      int rv, i;

      rv = mpt_read_cfg_header(mpt, MPI_CONFIG_PAGETYPE_SCSI_PORT, 0, 0,
          &mpt->mpt_port_page0.Header, FALSE, 5000);
      if (rv) {
            return (-1);
      }
      mpt_lprt(mpt, MPT_PRT_DEBUG, "SPI Port Page 0 Header: %x %x %x %x\n",
          mpt->mpt_port_page0.Header.PageVersion,
          mpt->mpt_port_page0.Header.PageLength,
          mpt->mpt_port_page0.Header.PageNumber,
          mpt->mpt_port_page0.Header.PageType);

      rv = mpt_read_cfg_header(mpt, MPI_CONFIG_PAGETYPE_SCSI_PORT, 1, 0,
          &mpt->mpt_port_page1.Header, FALSE, 5000);
      if (rv) {
            return (-1);
      }
      mpt_lprt(mpt, MPT_PRT_DEBUG, "SPI Port Page 1 Header: %x %x %x %x\n",
          mpt->mpt_port_page1.Header.PageVersion,
          mpt->mpt_port_page1.Header.PageLength,
          mpt->mpt_port_page1.Header.PageNumber,
          mpt->mpt_port_page1.Header.PageType);

      rv = mpt_read_cfg_header(mpt, MPI_CONFIG_PAGETYPE_SCSI_PORT, 2, 0,
          &mpt->mpt_port_page2.Header, FALSE, 5000);
      if (rv) {
            return (-1);
      }
      mpt_lprt(mpt, MPT_PRT_DEBUG, "SPI Port Page 2 Header: %x %x %x %x\n",
          mpt->mpt_port_page2.Header.PageVersion,
          mpt->mpt_port_page2.Header.PageLength,
          mpt->mpt_port_page2.Header.PageNumber,
          mpt->mpt_port_page2.Header.PageType);

      for (i = 0; i < 16; i++) {
            rv = mpt_read_cfg_header(mpt, MPI_CONFIG_PAGETYPE_SCSI_DEVICE,
                0, i, &mpt->mpt_dev_page0[i].Header, FALSE, 5000);
            if (rv) {
                  return (-1);
            }
            mpt_lprt(mpt, MPT_PRT_DEBUG,
                "SPI Target %d Device Page 0 Header: %x %x %x %x\n", i,
                mpt->mpt_dev_page0[i].Header.PageVersion,
                mpt->mpt_dev_page0[i].Header.PageLength,
                mpt->mpt_dev_page0[i].Header.PageNumber,
                mpt->mpt_dev_page0[i].Header.PageType);
            
            rv = mpt_read_cfg_header(mpt, MPI_CONFIG_PAGETYPE_SCSI_DEVICE,
                1, i, &mpt->mpt_dev_page1[i].Header, FALSE, 5000);
            if (rv) {
                  return (-1);
            }
            mpt_lprt(mpt, MPT_PRT_DEBUG,
                "SPI Target %d Device Page 1 Header: %x %x %x %x\n", i,
                mpt->mpt_dev_page1[i].Header.PageVersion,
                mpt->mpt_dev_page1[i].Header.PageLength,
                mpt->mpt_dev_page1[i].Header.PageNumber,
                mpt->mpt_dev_page1[i].Header.PageType);
      }

      /*
       * At this point, we don't *have* to fail. As long as we have
       * valid config header information, we can (barely) lurch
       * along.
       */

      rv = mpt_read_cur_cfg_page(mpt, 0, &mpt->mpt_port_page0.Header,
          sizeof(mpt->mpt_port_page0), FALSE, 5000);
      if (rv) {
            mpt_prt(mpt, "failed to read SPI Port Page 0\n");
      } else {
            mpt_lprt(mpt, MPT_PRT_NEGOTIATION,
                "SPI Port Page 0: Capabilities %x PhysicalInterface %x\n",
                mpt->mpt_port_page0.Capabilities,
                mpt->mpt_port_page0.PhysicalInterface);
      }

      rv = mpt_read_cur_cfg_page(mpt, 0, &mpt->mpt_port_page1.Header,
          sizeof(mpt->mpt_port_page1), FALSE, 5000);
      if (rv) {
            mpt_prt(mpt, "failed to read SPI Port Page 1\n");
      } else {
            mpt_lprt(mpt, MPT_PRT_DEBUG,
                "SPI Port Page 1: Configuration %x OnBusTimerValue %x\n",
                mpt->mpt_port_page1.Configuration,
                mpt->mpt_port_page1.OnBusTimerValue);
      }

      rv = mpt_read_cur_cfg_page(mpt, 0, &mpt->mpt_port_page2.Header,
          sizeof(mpt->mpt_port_page2), FALSE, 5000);
      if (rv) {
            mpt_prt(mpt, "failed to read SPI Port Page 2\n");
      } else {
            mpt_lprt(mpt, MPT_PRT_NEGOTIATION,
                "Port Page 2: Flags %x Settings %x\n",
                mpt->mpt_port_page2.PortFlags,
                mpt->mpt_port_page2.PortSettings);
            for (i = 0; i < 16; i++) {
                  mpt_lprt(mpt, MPT_PRT_NEGOTIATION,
                      " Port Page 2 Tgt %d: timo %x SF %x Flags %x\n",
                      i, mpt->mpt_port_page2.DeviceSettings[i].Timeout,
                      mpt->mpt_port_page2.DeviceSettings[i].SyncFactor,
                      mpt->mpt_port_page2.DeviceSettings[i].DeviceFlags);
            }
      }

      for (i = 0; i < 16; i++) {
            rv = mpt_read_cur_cfg_page(mpt, i,
                &mpt->mpt_dev_page0[i].Header, sizeof(*mpt->mpt_dev_page0),
                FALSE, 5000);
            if (rv) {
                  mpt_prt(mpt,
                      "cannot read SPI Target %d Device Page 0\n", i);
                  continue;
            }
            mpt_lprt(mpt, MPT_PRT_NEGOTIATION,
                "target %d page 0: Negotiated Params %x Information %x\n",
                i, mpt->mpt_dev_page0[i].NegotiatedParameters,
                mpt->mpt_dev_page0[i].Information);

            rv = mpt_read_cur_cfg_page(mpt, i,
                &mpt->mpt_dev_page1[i].Header, sizeof(*mpt->mpt_dev_page1),
                FALSE, 5000);
            if (rv) {
                  mpt_prt(mpt,
                      "cannot read SPI Target %d Device Page 1\n", i);
                  continue;
            }
            mpt_lprt(mpt, MPT_PRT_NEGOTIATION,
                "target %d page 1: Requested Params %x Configuration %x\n",
                i, mpt->mpt_dev_page1[i].RequestedParameters,
                mpt->mpt_dev_page1[i].Configuration);
      }
      return (0);
}

/*
 * Validate SPI configuration information.
 *
 * In particular, validate SPI Port Page 1.
 */
static int
mpt_set_initial_config_spi(struct mpt_softc *mpt)
{
      int i, j, pp1val = ((1 << mpt->mpt_ini_id) << 16) | mpt->mpt_ini_id;
      int error;

      mpt->mpt_disc_enable = 0xff;
      mpt->mpt_tag_enable = 0;

      if (mpt->mpt_port_page1.Configuration != pp1val) {
            CONFIG_PAGE_SCSI_PORT_1 tmp;

            mpt_prt(mpt, "SPI Port Page 1 Config value bad (%x)- should "
                "be %x\n", mpt->mpt_port_page1.Configuration, pp1val);
            tmp = mpt->mpt_port_page1;
            tmp.Configuration = pp1val;
            error = mpt_write_cur_cfg_page(mpt, 0,
                &tmp.Header, sizeof(tmp), FALSE, 5000);
            if (error) {
                  return (-1);
            }
            error = mpt_read_cur_cfg_page(mpt, 0,
                &tmp.Header, sizeof(tmp), FALSE, 5000);
            if (error) {
                  return (-1);
            }
            if (tmp.Configuration != pp1val) {
                  mpt_prt(mpt,
                      "failed to reset SPI Port Page 1 Config value\n");
                  return (-1);
            }
            mpt->mpt_port_page1 = tmp;
      }

      /*
       * The purpose of this exercise is to get
       * all targets back to async/narrow.
       *
       * We skip this step if the BIOS has already negotiated
       * speeds with the targets and does not require us to
       * do Domain Validation.
       */
      i = mpt->mpt_port_page2.PortSettings &
          MPI_SCSIPORTPAGE2_PORT_MASK_NEGO_MASTER_SETTINGS;
      j = mpt->mpt_port_page2.PortFlags &
          MPI_SCSIPORTPAGE2_PORT_FLAGS_DV_MASK;
      if (i == MPI_SCSIPORTPAGE2_PORT_ALL_MASTER_SETTINGS /* &&
          j == MPI_SCSIPORTPAGE2_PORT_FLAGS_OFF_DV */) {
            mpt_lprt(mpt, MPT_PRT_NEGOTIATION,
                "honoring BIOS transfer negotiations\n");
      } else {
            for (i = 0; i < 16; i++) {
                  mpt->mpt_dev_page1[i].RequestedParameters = 0;
                  mpt->mpt_dev_page1[i].Configuration = 0;
                  (void) mpt_update_spi_config(mpt, i);
            }
      }
      return (0);
}

int
mpt_cam_enable(struct mpt_softc *mpt)
{
      int error;

      MPT_LOCK(mpt);

      error = EIO;
      if (mpt->is_fc) {
            if (mpt_read_config_info_fc(mpt)) {
                  goto out;
            }
            if (mpt_set_initial_config_fc(mpt)) {
                  goto out;
            }
      } else if (mpt->is_sas) {
            if (mpt_read_config_info_sas(mpt)) {
                  goto out;
            }
            if (mpt_set_initial_config_sas(mpt)) {
                  goto out;
            }
      } else if (mpt->is_spi) {
            if (mpt_read_config_info_spi(mpt)) {
                  goto out;
            }
            if (mpt_set_initial_config_spi(mpt)) {
                  goto out;
            }
      }
      error = 0;

out:
      MPT_UNLOCK(mpt);
      return (error);
}

void
mpt_cam_ready(struct mpt_softc *mpt)
{
      /*
       * If we're in target mode, hang out resources now
       * so we don't cause the world to hang talking to us.
       */
      if (mpt->is_fc && (mpt->role & MPT_ROLE_TARGET)) {
            /*
             * Try to add some target command resources
             */
            MPT_LOCK(mpt);
            if (mpt_add_target_commands(mpt) == FALSE) {
                  mpt_prt(mpt, "failed to add target commands\n");
            }
            MPT_UNLOCK(mpt);
      }
      mpt->ready = 1;
}

void
mpt_cam_detach(struct mpt_softc *mpt)
{
      mpt_handler_t handler;

      MPT_LOCK(mpt);
      mpt->ready = 0;
      mpt_terminate_recovery_thread(mpt); 

      handler.reply_handler = mpt_scsi_reply_handler;
      mpt_deregister_handler(mpt, MPT_HANDLER_REPLY, handler,
                         scsi_io_handler_id);
      handler.reply_handler = mpt_scsi_tmf_reply_handler;
      mpt_deregister_handler(mpt, MPT_HANDLER_REPLY, handler,
                         scsi_tmf_handler_id);
      handler.reply_handler = mpt_fc_els_reply_handler;
      mpt_deregister_handler(mpt, MPT_HANDLER_REPLY, handler,
                         fc_els_handler_id);
      handler.reply_handler = mpt_scsi_tgt_reply_handler;
      mpt_deregister_handler(mpt, MPT_HANDLER_REPLY, handler,
                         mpt->scsi_tgt_handler_id);
      handler.reply_handler = mpt_sata_pass_reply_handler;
      mpt_deregister_handler(mpt, MPT_HANDLER_REPLY, handler,
                         sata_pass_handler_id);

      if (mpt->tmf_req != NULL) {
            mpt->tmf_req->state = REQ_STATE_ALLOCATED;
            mpt_free_request(mpt, mpt->tmf_req);
            mpt->tmf_req = NULL;
      }
      if (mpt->sas_portinfo != NULL) {
            free(mpt->sas_portinfo, M_DEVBUF);
            mpt->sas_portinfo = NULL;
      }
      MPT_UNLOCK(mpt);

      if (mpt->sim != NULL) {
            xpt_free_path(mpt->path);
            xpt_bus_deregister(cam_sim_path(mpt->sim));
            cam_sim_free(mpt->sim, TRUE);
            mpt->sim = NULL;
      }

      if (mpt->phydisk_sim != NULL) {
            xpt_free_path(mpt->phydisk_path);
            xpt_bus_deregister(cam_sim_path(mpt->phydisk_sim));
            cam_sim_free(mpt->phydisk_sim, TRUE);
            mpt->phydisk_sim = NULL;
      }
}

/* This routine is used after a system crash to dump core onto the swap device.
 */
static void
mpt_poll(struct cam_sim *sim)
{
      struct mpt_softc *mpt;

      mpt = (struct mpt_softc *)cam_sim_softc(sim);
      mpt_intr(mpt);
}

/*
 * Watchdog timeout routine for SCSI requests.
 */
static void
mpt_timeout(void *arg)
{
      union ccb    *ccb;
      struct mpt_softc *mpt;
      request_t    *req;

      ccb = (union ccb *)arg;
      mpt = ccb->ccb_h.ccb_mpt_ptr;

      MPT_LOCK(mpt);
      req = ccb->ccb_h.ccb_req_ptr;
      mpt_prt(mpt, "request %p:%u timed out for ccb %p (req->ccb %p)\n", req,
          req->serno, ccb, req->ccb);
/* XXX: WHAT ARE WE TRYING TO DO HERE? */
      if ((req->state & REQ_STATE_QUEUED) == REQ_STATE_QUEUED) {
            TAILQ_REMOVE(&mpt->request_pending_list, req, links);
            TAILQ_INSERT_TAIL(&mpt->request_timeout_list, req, links);
            req->state |= REQ_STATE_TIMEDOUT;
            mpt_wakeup_recovery_thread(mpt);
      }
      MPT_UNLOCK(mpt);
}

/*
 * Callback routine from "bus_dmamap_load" or, in simple cases, called directly.
 *
 * Takes a list of physical segments and builds the SGL for SCSI IO command
 * and forwards the commard to the IOC after one last check that CAM has not
 * aborted the transaction.
 */
static void
mpt_execute_req_a64(void *arg, bus_dma_segment_t *dm_segs, int nseg, int error)
{
      request_t *req, *trq;
      char *mpt_off;
      union ccb *ccb;
      struct mpt_softc *mpt;
      int seg, first_lim;
      uint32_t flags, nxt_off;
      void *sglp = NULL;
      MSG_REQUEST_HEADER *hdrp;
      SGE_SIMPLE64 *se;
      SGE_CHAIN64 *ce;
      int istgt = 0;

      req = (request_t *)arg;
      ccb = req->ccb;

      mpt = ccb->ccb_h.ccb_mpt_ptr;
      req = ccb->ccb_h.ccb_req_ptr;

      hdrp = req->req_vbuf;
      mpt_off = req->req_vbuf;

      if (error == 0 && ((uint32_t)nseg) >= mpt->max_seg_cnt) {
            error = EFBIG;
      }

      if (error == 0) {
            switch (hdrp->Function) {
            case MPI_FUNCTION_SCSI_IO_REQUEST:
            case MPI_FUNCTION_RAID_SCSI_IO_PASSTHROUGH:
                  istgt = 0;
                  sglp = &((PTR_MSG_SCSI_IO_REQUEST)hdrp)->SGL;
                  break;
            case MPI_FUNCTION_TARGET_ASSIST:
                  istgt = 1;
                  sglp = &((PTR_MSG_TARGET_ASSIST_REQUEST)hdrp)->SGL;
                  break;
            default:
                  mpt_prt(mpt, "bad fct 0x%x in mpt_execute_req_a64\n",
                      hdrp->Function);
                  error = EINVAL;
                  break;
            }
      }

      if (error == 0 && ((uint32_t)nseg) >= mpt->max_seg_cnt) {
            error = EFBIG;
            mpt_prt(mpt, "segment count %d too large (max %u)\n",
                nseg, mpt->max_seg_cnt);
      }

bad:
      if (error != 0) {
            if (error != EFBIG && error != ENOMEM) {
                  mpt_prt(mpt, "mpt_execute_req_a64: err %d\n", error);
            }
            if ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_INPROG) {
                  cam_status status;
                  mpt_freeze_ccb(ccb);
                  if (error == EFBIG) {
                        status = CAM_REQ_TOO_BIG;
                  } else if (error == ENOMEM) {
                        if (mpt->outofbeer == 0) {
                              mpt->outofbeer = 1;
                              xpt_freeze_simq(mpt->sim, 1);
                              mpt_lprt(mpt, MPT_PRT_DEBUG,
                                  "FREEZEQ\n");
                        }
                        status = CAM_REQUEUE_REQ;
                  } else {
                        status = CAM_REQ_CMP_ERR;
                  }
                  mpt_set_ccb_status(ccb, status);
            }
            if (hdrp->Function == MPI_FUNCTION_TARGET_ASSIST) {
                  request_t *cmd_req =
                        MPT_TAG_2_REQ(mpt, ccb->csio.tag_id);
                  MPT_TGT_STATE(mpt, cmd_req)->state = TGT_STATE_IN_CAM;
                  MPT_TGT_STATE(mpt, cmd_req)->ccb = NULL;
                  MPT_TGT_STATE(mpt, cmd_req)->req = NULL;
            }
            ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
            KASSERT(ccb->ccb_h.status, ("zero ccb sts at %d\n", __LINE__));
            xpt_done(ccb);
            CAMLOCK_2_MPTLOCK(mpt);
            mpt_free_request(mpt, req);
            MPTLOCK_2_CAMLOCK(mpt);
            return;
      }

      /*
       * No data to transfer?
       * Just make a single simple SGL with zero length.
       */

      if (mpt->verbose >= MPT_PRT_DEBUG) {
            int tidx = ((char *)sglp) - mpt_off;
            memset(&mpt_off[tidx], 0xff, MPT_REQUEST_AREA - tidx);
      }

      if (nseg == 0) {
            SGE_SIMPLE32 *se1 = (SGE_SIMPLE32 *) sglp;
            MPI_pSGE_SET_FLAGS(se1,
                (MPI_SGE_FLAGS_LAST_ELEMENT | MPI_SGE_FLAGS_END_OF_BUFFER |
                MPI_SGE_FLAGS_SIMPLE_ELEMENT | MPI_SGE_FLAGS_END_OF_LIST));
            se1->FlagsLength = htole32(se1->FlagsLength);
            goto out;
      }


      flags = MPI_SGE_FLAGS_SIMPLE_ELEMENT | MPI_SGE_FLAGS_64_BIT_ADDRESSING;
      if (istgt == 0) {
            if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_OUT) {
                  flags |= MPI_SGE_FLAGS_HOST_TO_IOC;
            }
      } else {
            if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) {
                  flags |= MPI_SGE_FLAGS_HOST_TO_IOC;
            }
      }

      if (!(ccb->ccb_h.flags & (CAM_SG_LIST_PHYS|CAM_DATA_PHYS))) {
            bus_dmasync_op_t op;
            if (istgt == 0) {
                  if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) {
                        op = BUS_DMASYNC_PREREAD;
                  } else {
                        op = BUS_DMASYNC_PREWRITE;
                  }
            } else {
                  if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) {
                        op = BUS_DMASYNC_PREWRITE;
                  } else {
                        op = BUS_DMASYNC_PREREAD;
                  }
            }
            bus_dmamap_sync(mpt->buffer_dmat, req->dmap, op);
      }

      /*
       * Okay, fill in what we can at the end of the command frame.
       * If we have up to MPT_NSGL_FIRST, we can fit them all into
       * the command frame.
       *
       * Otherwise, we fill up through MPT_NSGL_FIRST less one
       * SIMPLE64 pointers and start doing CHAIN64 entries after
       * that.
       */

      if (nseg < MPT_NSGL_FIRST(mpt)) {
            first_lim = nseg;
      } else {
            /*
             * Leave room for CHAIN element
             */
            first_lim = MPT_NSGL_FIRST(mpt) - 1;
      }

      se = (SGE_SIMPLE64 *) sglp;
      for (seg = 0; seg < first_lim; seg++, se++, dm_segs++) {
            uint32_t tf;

            memset(se, 0, sizeof (*se));
            se->Address.Low = htole32(dm_segs->ds_addr & 0xffffffff);
            if (sizeof(bus_addr_t) > 4) {
                  se->Address.High = ((uint64_t) dm_segs->ds_addr) >> 32;
            }
            MPI_pSGE_SET_LENGTH(se, dm_segs->ds_len);
            tf = flags;
            if (seg == first_lim - 1) {
                  tf |= MPI_SGE_FLAGS_LAST_ELEMENT;
            }
            if (seg == nseg - 1) {
                  tf |= MPI_SGE_FLAGS_END_OF_LIST |
                        MPI_SGE_FLAGS_END_OF_BUFFER;
            }
            MPI_pSGE_SET_FLAGS(se, tf);
            se->FlagsLength = htole32(se->FlagsLength);
      }

      if (seg == nseg) {
            goto out;
      }

      /*
       * Tell the IOC where to find the first chain element.
       */
      hdrp->ChainOffset = ((char *)se - (char *)hdrp) >> 2;
      nxt_off = MPT_RQSL(mpt);
      trq = req;

      /*
       * Make up the rest of the data segments out of a chain element
       * (contiained in the current request frame) which points to
       * SIMPLE64 elements in the next request frame, possibly ending
       * with *another* chain element (if there's more).
       */
      while (seg < nseg) {
            int this_seg_lim;
            uint32_t tf, cur_off;
            bus_addr_t chain_list_addr;

            /*
             * Point to the chain descriptor. Note that the chain
             * descriptor is at the end of the *previous* list (whether
             * chain or simple).
             */
            ce = (SGE_CHAIN64 *) se;

            /*
             * Before we change our current pointer, make  sure we won't
             * overflow the request area with this frame. Note that we
             * test against 'greater than' here as it's okay in this case
             * to have next offset be just outside the request area.
             */
            if ((nxt_off + MPT_RQSL(mpt)) > MPT_REQUEST_AREA) {
                  nxt_off = MPT_REQUEST_AREA;
                  goto next_chain;
            }

            /*
             * Set our SGE element pointer to the beginning of the chain
             * list and update our next chain list offset.
             */
            se = (SGE_SIMPLE64 *) &mpt_off[nxt_off];
            cur_off = nxt_off;
            nxt_off += MPT_RQSL(mpt);

            /*
             * Now initialized the chain descriptor.
             */
            memset(ce, 0, sizeof (*ce));

            /*
             * Get the physical address of the chain list.
             */
            chain_list_addr = trq->req_pbuf;
            chain_list_addr += cur_off;
            if (sizeof (bus_addr_t) > 4) {
                  ce->Address.High =
                      htole32((uint32_t) ((uint64_t)chain_list_addr >> 32));
            }
            ce->Address.Low = htole32((uint32_t) chain_list_addr);
            ce->Flags = MPI_SGE_FLAGS_CHAIN_ELEMENT |
                      MPI_SGE_FLAGS_64_BIT_ADDRESSING;

            /*
             * If we have more than a frame's worth of segments left,
             * set up the chain list to have the last element be another
             * chain descriptor.
             */
            if ((nseg - seg) > MPT_NSGL(mpt)) {
                  this_seg_lim = seg + MPT_NSGL(mpt) - 1;
                  /*
                   * The length of the chain is the length in bytes of the
                   * number of segments plus the next chain element.
                   *
                   * The next chain descriptor offset is the length,
                   * in words, of the number of segments.
                   */
                  ce->Length = (this_seg_lim - seg) *
                      sizeof (SGE_SIMPLE64);
                  ce->NextChainOffset = ce->Length >> 2;
                  ce->Length += sizeof (SGE_CHAIN64);
            } else {
                  this_seg_lim = nseg;
                  ce->Length = (this_seg_lim - seg) *
                      sizeof (SGE_SIMPLE64);
            }

            /*
             * Fill in the chain list SGE elements with our segment data.
             *
             * If we're the last element in this chain list, set the last
             * element flag. If we're the completely last element period,
             * set the end of list and end of buffer flags.
             */
            while (seg < this_seg_lim) {
                  memset(se, 0, sizeof (*se));
                  se->Address.Low = htole32(dm_segs->ds_addr);
                  if (sizeof (bus_addr_t) > 4) {
                        se->Address.High =
                            htole32(((uint64_t)dm_segs->ds_addr) >> 32);
                  }
                  MPI_pSGE_SET_LENGTH(se, dm_segs->ds_len);
                  tf = flags;
                  if (seg ==  this_seg_lim - 1) {
                        tf |= MPI_SGE_FLAGS_LAST_ELEMENT;
                  }
                  if (seg == nseg - 1) {
                        tf |= MPI_SGE_FLAGS_END_OF_LIST |
                              MPI_SGE_FLAGS_END_OF_BUFFER;
                  }
                  MPI_pSGE_SET_FLAGS(se, tf);
                  se->FlagsLength = htole32(se->FlagsLength);
                  se++;
                  seg++;
                  dm_segs++;
            }

    next_chain:
            /*
             * If we have more segments to do and we've used up all of
             * the space in a request area, go allocate another one
             * and chain to that.
             */
            if (seg < nseg && nxt_off >= MPT_REQUEST_AREA) {
                  request_t *nrq;

                  CAMLOCK_2_MPTLOCK(mpt);
                  nrq = mpt_get_request(mpt, FALSE);
                  MPTLOCK_2_CAMLOCK(mpt);

                  if (nrq == NULL) {
                        error = ENOMEM;
                        goto bad;
                  }

                  /*
                   * Append the new request area on the tail of our list.
                   */
                  if ((trq = req->chain) == NULL) {
                        req->chain = nrq;
                  } else {
                        while (trq->chain != NULL) {
                              trq = trq->chain;
                        }
                        trq->chain = nrq;
                  }
                  trq = nrq;
                  mpt_off = trq->req_vbuf;
                  if (mpt->verbose >= MPT_PRT_DEBUG) {
                        memset(mpt_off, 0xff, MPT_REQUEST_AREA);
                  }
                  nxt_off = 0;
            }
      }
out:

      /*
       * Last time we need to check if this CCB needs to be aborted.
       */
      if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_INPROG) {
            if (hdrp->Function == MPI_FUNCTION_TARGET_ASSIST) {
                  request_t *cmd_req =
                        MPT_TAG_2_REQ(mpt, ccb->csio.tag_id);
                  MPT_TGT_STATE(mpt, cmd_req)->state = TGT_STATE_IN_CAM;
                  MPT_TGT_STATE(mpt, cmd_req)->ccb = NULL;
                  MPT_TGT_STATE(mpt, cmd_req)->req = NULL;
            }
            mpt_prt(mpt,
                "mpt_execute_req_a64: I/O cancelled (status 0x%x)\n",
                ccb->ccb_h.status & CAM_STATUS_MASK);
            if (nseg && (ccb->ccb_h.flags & CAM_SG_LIST_PHYS) == 0) {
                  bus_dmamap_unload(mpt->buffer_dmat, req->dmap);
            }
            ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
            KASSERT(ccb->ccb_h.status, ("zero ccb sts at %d\n", __LINE__));
            xpt_done(ccb);
            CAMLOCK_2_MPTLOCK(mpt);
            mpt_free_request(mpt, req);
            MPTLOCK_2_CAMLOCK(mpt);
            return;
      }

      ccb->ccb_h.status |= CAM_SIM_QUEUED;
      if (ccb->ccb_h.timeout != CAM_TIME_INFINITY) {
            mpt_req_timeout(req, (ccb->ccb_h.timeout * hz) / 1000,
                mpt_timeout, ccb);
      }
      if (mpt->verbose > MPT_PRT_DEBUG) {
            int nc = 0;
            mpt_print_request(req->req_vbuf);
            for (trq = req->chain; trq; trq = trq->chain) {
                  printf("  Additional Chain Area %d\n", nc++);
                  mpt_dump_sgl(trq->req_vbuf, 0);
            }
      }

      if (hdrp->Function == MPI_FUNCTION_TARGET_ASSIST) {
            request_t *cmd_req = MPT_TAG_2_REQ(mpt, ccb->csio.tag_id);
            mpt_tgt_state_t *tgt = MPT_TGT_STATE(mpt, cmd_req);
#ifdef      WE_TRUST_AUTO_GOOD_STATUS
            if ((ccb->ccb_h.flags & CAM_SEND_STATUS) &&
                csio->scsi_status == SCSI_STATUS_OK && tgt->resid == 0) {
                  tgt->state = TGT_STATE_MOVING_DATA_AND_STATUS;
            } else {
                  tgt->state = TGT_STATE_MOVING_DATA;
            }
#else
            tgt->state = TGT_STATE_MOVING_DATA;
#endif
      }
      CAMLOCK_2_MPTLOCK(mpt);
      mpt_send_cmd(mpt, req);
      MPTLOCK_2_CAMLOCK(mpt);
}

static void
mpt_execute_req(void *arg, bus_dma_segment_t *dm_segs, int nseg, int error)
{
      request_t *req, *trq;
      char *mpt_off;
      union ccb *ccb;
      struct mpt_softc *mpt;
      int seg, first_lim;
      uint32_t flags, nxt_off;
      void *sglp = NULL;
      MSG_REQUEST_HEADER *hdrp;
      SGE_SIMPLE32 *se;
      SGE_CHAIN32 *ce;
      int istgt = 0;

      req = (request_t *)arg;
      ccb = req->ccb;

      mpt = ccb->ccb_h.ccb_mpt_ptr;
      req = ccb->ccb_h.ccb_req_ptr;

      hdrp = req->req_vbuf;
      mpt_off = req->req_vbuf;


      if (error == 0 && ((uint32_t)nseg) >= mpt->max_seg_cnt) {
            error = EFBIG;
      }

      if (error == 0) {
            switch (hdrp->Function) {
            case MPI_FUNCTION_SCSI_IO_REQUEST:
            case MPI_FUNCTION_RAID_SCSI_IO_PASSTHROUGH:
                  sglp = &((PTR_MSG_SCSI_IO_REQUEST)hdrp)->SGL;
                  break;
            case MPI_FUNCTION_TARGET_ASSIST:
                  istgt = 1;
                  sglp = &((PTR_MSG_TARGET_ASSIST_REQUEST)hdrp)->SGL;
                  break;
            default:
                  mpt_prt(mpt, "bad fct 0x%x in mpt_execute_req\n",
                      hdrp->Function);
                  error = EINVAL;
                  break;
            }
      }

      if (error == 0 && ((uint32_t)nseg) >= mpt->max_seg_cnt) {
            error = EFBIG;
            mpt_prt(mpt, "segment count %d too large (max %u)\n",
                nseg, mpt->max_seg_cnt);
      }

bad:
      if (error != 0) {
            if (error != EFBIG && error != ENOMEM) {
                  mpt_prt(mpt, "mpt_execute_req: err %d\n", error);
            }
            if ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_INPROG) {
                  cam_status status;
                  mpt_freeze_ccb(ccb);
                  if (error == EFBIG) {
                        status = CAM_REQ_TOO_BIG;
                  } else if (error == ENOMEM) {
                        if (mpt->outofbeer == 0) {
                              mpt->outofbeer = 1;
                              xpt_freeze_simq(mpt->sim, 1);
                              mpt_lprt(mpt, MPT_PRT_DEBUG,
                                  "FREEZEQ\n");
                        }
                        status = CAM_REQUEUE_REQ;
                  } else {
                        status = CAM_REQ_CMP_ERR;
                  }
                  mpt_set_ccb_status(ccb, status);
            }
            if (hdrp->Function == MPI_FUNCTION_TARGET_ASSIST) {
                  request_t *cmd_req =
                        MPT_TAG_2_REQ(mpt, ccb->csio.tag_id);
                  MPT_TGT_STATE(mpt, cmd_req)->state = TGT_STATE_IN_CAM;
                  MPT_TGT_STATE(mpt, cmd_req)->ccb = NULL;
                  MPT_TGT_STATE(mpt, cmd_req)->req = NULL;
            }
            ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
            KASSERT(ccb->ccb_h.status, ("zero ccb sts at %d\n", __LINE__));
            xpt_done(ccb);
            CAMLOCK_2_MPTLOCK(mpt);
            mpt_free_request(mpt, req);
            MPTLOCK_2_CAMLOCK(mpt);
            return;
      }

      /*
       * No data to transfer?
       * Just make a single simple SGL with zero length.
       */

      if (mpt->verbose >= MPT_PRT_DEBUG) {
            int tidx = ((char *)sglp) - mpt_off;
            memset(&mpt_off[tidx], 0xff, MPT_REQUEST_AREA - tidx);
      }

      if (nseg == 0) {
            SGE_SIMPLE32 *se1 = (SGE_SIMPLE32 *) sglp;
            MPI_pSGE_SET_FLAGS(se1,
                (MPI_SGE_FLAGS_LAST_ELEMENT | MPI_SGE_FLAGS_END_OF_BUFFER |
                MPI_SGE_FLAGS_SIMPLE_ELEMENT | MPI_SGE_FLAGS_END_OF_LIST));
            se1->FlagsLength = htole32(se1->FlagsLength);
            goto out;
      }


      flags = MPI_SGE_FLAGS_SIMPLE_ELEMENT;
      if (istgt == 0) {
            if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_OUT) {
                  flags |= MPI_SGE_FLAGS_HOST_TO_IOC;
            }
      } else {
            if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) {
                  flags |= MPI_SGE_FLAGS_HOST_TO_IOC;
            }
      }

      if (!(ccb->ccb_h.flags & (CAM_SG_LIST_PHYS|CAM_DATA_PHYS))) {
            bus_dmasync_op_t op;
            if (istgt) {
                  if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) {
                        op = BUS_DMASYNC_PREREAD;
                  } else {
                        op = BUS_DMASYNC_PREWRITE;
                  }
            } else {
                  if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) {
                        op = BUS_DMASYNC_PREWRITE;
                  } else {
                        op = BUS_DMASYNC_PREREAD;
                  }
            }
            bus_dmamap_sync(mpt->buffer_dmat, req->dmap, op);
      }

      /*
       * Okay, fill in what we can at the end of the command frame.
       * If we have up to MPT_NSGL_FIRST, we can fit them all into
       * the command frame.
       *
       * Otherwise, we fill up through MPT_NSGL_FIRST less one
       * SIMPLE32 pointers and start doing CHAIN32 entries after
       * that.
       */

      if (nseg < MPT_NSGL_FIRST(mpt)) {
            first_lim = nseg;
      } else {
            /*
             * Leave room for CHAIN element
             */
            first_lim = MPT_NSGL_FIRST(mpt) - 1;
      }

      se = (SGE_SIMPLE32 *) sglp;
      for (seg = 0; seg < first_lim; seg++, se++, dm_segs++) {
            uint32_t tf;

            memset(se, 0,sizeof (*se));
            se->Address = dm_segs->ds_addr;



            MPI_pSGE_SET_LENGTH(se, dm_segs->ds_len);
            tf = flags;
            if (seg == first_lim - 1) {
                  tf |= MPI_SGE_FLAGS_LAST_ELEMENT;
            }
            if (seg == nseg - 1) {
                  tf |= MPI_SGE_FLAGS_END_OF_LIST |
                        MPI_SGE_FLAGS_END_OF_BUFFER;
            }
            MPI_pSGE_SET_FLAGS(se, tf);
            se->FlagsLength = htole32(se->FlagsLength);
      }

      if (seg == nseg) {
            goto out;
      }

      /*
       * Tell the IOC where to find the first chain element.
       */
      hdrp->ChainOffset = ((char *)se - (char *)hdrp) >> 2;
      nxt_off = MPT_RQSL(mpt);
      trq = req;

      /*
       * Make up the rest of the data segments out of a chain element
       * (contiained in the current request frame) which points to
       * SIMPLE32 elements in the next request frame, possibly ending
       * with *another* chain element (if there's more).
       */
      while (seg < nseg) {
            int this_seg_lim;
            uint32_t tf, cur_off;
            bus_addr_t chain_list_addr;

            /*
             * Point to the chain descriptor. Note that the chain
             * descriptor is at the end of the *previous* list (whether
             * chain or simple).
             */
            ce = (SGE_CHAIN32 *) se;

            /*
             * Before we change our current pointer, make  sure we won't
             * overflow the request area with this frame. Note that we
             * test against 'greater than' here as it's okay in this case
             * to have next offset be just outside the request area.
             */
            if ((nxt_off + MPT_RQSL(mpt)) > MPT_REQUEST_AREA) {
                  nxt_off = MPT_REQUEST_AREA;
                  goto next_chain;
            }

            /*
             * Set our SGE element pointer to the beginning of the chain
             * list and update our next chain list offset.
             */
            se = (SGE_SIMPLE32 *) &mpt_off[nxt_off];
            cur_off = nxt_off;
            nxt_off += MPT_RQSL(mpt);

            /*
             * Now initialized the chain descriptor.
             */
            memset(ce, 0, sizeof (*ce));

            /*
             * Get the physical address of the chain list.
             */
            chain_list_addr = trq->req_pbuf;
            chain_list_addr += cur_off;



            ce->Address = chain_list_addr;
            ce->Flags = MPI_SGE_FLAGS_CHAIN_ELEMENT;


            /*
             * If we have more than a frame's worth of segments left,
             * set up the chain list to have the last element be another
             * chain descriptor.
             */
            if ((nseg - seg) > MPT_NSGL(mpt)) {
                  this_seg_lim = seg + MPT_NSGL(mpt) - 1;
                  /*
                   * The length of the chain is the length in bytes of the
                   * number of segments plus the next chain element.
                   *
                   * The next chain descriptor offset is the length,
                   * in words, of the number of segments.
                   */
                  ce->Length = (this_seg_lim - seg) *
                      sizeof (SGE_SIMPLE32);
                  ce->NextChainOffset = ce->Length >> 2;
                  ce->Length += sizeof (SGE_CHAIN32);
            } else {
                  this_seg_lim = nseg;
                  ce->Length = (this_seg_lim - seg) *
                      sizeof (SGE_SIMPLE32);
            }

            /*
             * Fill in the chain list SGE elements with our segment data.
             *
             * If we're the last element in this chain list, set the last
             * element flag. If we're the completely last element period,
             * set the end of list and end of buffer flags.
             */
            while (seg < this_seg_lim) {
                  memset(se, 0, sizeof (*se));
                  se->Address = dm_segs->ds_addr;




                  MPI_pSGE_SET_LENGTH(se, dm_segs->ds_len);
                  tf = flags;
                  if (seg ==  this_seg_lim - 1) {
                        tf |= MPI_SGE_FLAGS_LAST_ELEMENT;
                  }
                  if (seg == nseg - 1) {
                        tf |= MPI_SGE_FLAGS_END_OF_LIST |
                              MPI_SGE_FLAGS_END_OF_BUFFER;
                  }
                  MPI_pSGE_SET_FLAGS(se, tf);
                  se->FlagsLength = htole32(se->FlagsLength);
                  se++;
                  seg++;
                  dm_segs++;
            }

    next_chain:
            /*
             * If we have more segments to do and we've used up all of
             * the space in a request area, go allocate another one
             * and chain to that.
             */
            if (seg < nseg && nxt_off >= MPT_REQUEST_AREA) {
                  request_t *nrq;

                  CAMLOCK_2_MPTLOCK(mpt);
                  nrq = mpt_get_request(mpt, FALSE);
                  MPTLOCK_2_CAMLOCK(mpt);

                  if (nrq == NULL) {
                        error = ENOMEM;
                        goto bad;
                  }

                  /*
                   * Append the new request area on the tail of our list.
                   */
                  if ((trq = req->chain) == NULL) {
                        req->chain = nrq;
                  } else {
                        while (trq->chain != NULL) {
                              trq = trq->chain;
                        }
                        trq->chain = nrq;
                  }
                  trq = nrq;
                  mpt_off = trq->req_vbuf;
                  if (mpt->verbose >= MPT_PRT_DEBUG) {
                        memset(mpt_off, 0xff, MPT_REQUEST_AREA);
                  }
                  nxt_off = 0;
            }
      }
out:

      /*
       * Last time we need to check if this CCB needs to be aborted.
       */
      if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_INPROG) {
            if (hdrp->Function == MPI_FUNCTION_TARGET_ASSIST) {
                  request_t *cmd_req =
                        MPT_TAG_2_REQ(mpt, ccb->csio.tag_id);
                  MPT_TGT_STATE(mpt, cmd_req)->state = TGT_STATE_IN_CAM;
                  MPT_TGT_STATE(mpt, cmd_req)->ccb = NULL;
                  MPT_TGT_STATE(mpt, cmd_req)->req = NULL;
            }
            mpt_prt(mpt,
                "mpt_execute_req: I/O cancelled (status 0x%x)\n",
                ccb->ccb_h.status & CAM_STATUS_MASK);
            if (nseg && (ccb->ccb_h.flags & CAM_SG_LIST_PHYS) == 0) {
                  bus_dmamap_unload(mpt->buffer_dmat, req->dmap);
            }
            ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
            KASSERT(ccb->ccb_h.status, ("zero ccb sts at %d\n", __LINE__));
            xpt_done(ccb);
            CAMLOCK_2_MPTLOCK(mpt);
            mpt_free_request(mpt, req);
            MPTLOCK_2_CAMLOCK(mpt);
            return;
      }

      ccb->ccb_h.status |= CAM_SIM_QUEUED;
      if (ccb->ccb_h.timeout != CAM_TIME_INFINITY) {
            mpt_req_timeout(req, (ccb->ccb_h.timeout * hz) / 1000,
                mpt_timeout, ccb);
      }
      if (mpt->verbose > MPT_PRT_DEBUG) {
            int nc = 0;
            mpt_print_request(req->req_vbuf);
            for (trq = req->chain; trq; trq = trq->chain) {
                  printf("  Additional Chain Area %d\n", nc++);
                  mpt_dump_sgl(trq->req_vbuf, 0);
            }
      }

      if (hdrp->Function == MPI_FUNCTION_TARGET_ASSIST) {
            request_t *cmd_req = MPT_TAG_2_REQ(mpt, ccb->csio.tag_id);
            mpt_tgt_state_t *tgt = MPT_TGT_STATE(mpt, cmd_req);
#ifdef      WE_TRUST_AUTO_GOOD_STATUS
            if ((ccb->ccb_h.flags & CAM_SEND_STATUS) &&
                csio->scsi_status == SCSI_STATUS_OK && tgt->resid == 0) {
                  tgt->state = TGT_STATE_MOVING_DATA_AND_STATUS;
            } else {
                  tgt->state = TGT_STATE_MOVING_DATA;
            }
#else
            tgt->state = TGT_STATE_MOVING_DATA;
#endif
      }
      CAMLOCK_2_MPTLOCK(mpt);
      mpt_send_cmd(mpt, req);
      MPTLOCK_2_CAMLOCK(mpt);
}

static void
mpt_start(struct cam_sim *sim, union ccb *ccb)
{
      request_t *req;
      struct mpt_softc *mpt;
      MSG_SCSI_IO_REQUEST *mpt_req;
      struct ccb_scsiio *csio = &ccb->csio;
      struct ccb_hdr *ccbh = &ccb->ccb_h;
      bus_dmamap_callback_t *cb;
      target_id_t tgt;
      int raid_passthru;

      /* Get the pointer for the physical addapter */
      mpt = ccb->ccb_h.ccb_mpt_ptr;
      raid_passthru = (sim == mpt->phydisk_sim);

      CAMLOCK_2_MPTLOCK(mpt);
      if ((req = mpt_get_request(mpt, FALSE)) == NULL) {
            if (mpt->outofbeer == 0) {
                  mpt->outofbeer = 1;
                  xpt_freeze_simq(mpt->sim, 1);
                  mpt_lprt(mpt, MPT_PRT_DEBUG, "FREEZEQ\n");
            }
            ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
            mpt_set_ccb_status(ccb, CAM_REQUEUE_REQ);
            MPTLOCK_2_CAMLOCK(mpt);
            xpt_done(ccb);
            return;
      }
#ifdef      INVARIANTS
      mpt_req_not_spcl(mpt, req, "mpt_start", __LINE__);
#endif
      MPTLOCK_2_CAMLOCK(mpt);

      if (sizeof (bus_addr_t) > 4) {
            cb = mpt_execute_req_a64;
      } else {
            cb = mpt_execute_req;
      }

      /*
       * Link the ccb and the request structure so we can find
       * the other knowing either the request or the ccb
       */
      req->ccb = ccb;
      ccb->ccb_h.ccb_req_ptr = req;

      /* Now we build the command for the IOC */
      mpt_req = req->req_vbuf;
      memset(mpt_req, 0, sizeof (MSG_SCSI_IO_REQUEST));

      mpt_req->Function = MPI_FUNCTION_SCSI_IO_REQUEST;
      if (raid_passthru) {
            mpt_req->Function = MPI_FUNCTION_RAID_SCSI_IO_PASSTHROUGH;
            CAMLOCK_2_MPTLOCK(mpt);
            if (mpt_map_physdisk(mpt, ccb, &tgt) != 0) {
                  MPTLOCK_2_CAMLOCK(mpt);
                  ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
                  mpt_set_ccb_status(ccb, CAM_DEV_NOT_THERE);
                  xpt_done(ccb);
                  return;
            }
            MPTLOCK_2_CAMLOCK(mpt);
            mpt_req->Bus = 0; /* we never set bus here */
      } else {
            tgt = ccb->ccb_h.target_id;
            mpt_req->Bus = 0; /* XXX */
            
      }
      mpt_req->SenseBufferLength =
            (csio->sense_len < MPT_SENSE_SIZE) ?
             csio->sense_len : MPT_SENSE_SIZE;

      /*
       * We use the message context to find the request structure when we
       * Get the command completion interrupt from the IOC.
       */
      mpt_req->MsgContext = htole32(req->index | scsi_io_handler_id);

      /* Which physical device to do the I/O on */
      mpt_req->TargetID = tgt;

      /* We assume a single level LUN type */
      if (ccb->ccb_h.target_lun >= 256) {
            mpt_req->LUN[0] = 0x40 | ((ccb->ccb_h.target_lun >> 8) & 0x3f);
            mpt_req->LUN[1] = ccb->ccb_h.target_lun & 0xff;
      } else {
            mpt_req->LUN[1] = ccb->ccb_h.target_lun;
      }

      /* Set the direction of the transfer */
      if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) {
            mpt_req->Control = MPI_SCSIIO_CONTROL_READ;
      } else if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_OUT) {
            mpt_req->Control = MPI_SCSIIO_CONTROL_WRITE;
      } else {
            mpt_req->Control = MPI_SCSIIO_CONTROL_NODATATRANSFER;
      }

      if ((ccb->ccb_h.flags & CAM_TAG_ACTION_VALID) != 0) {
            switch(ccb->csio.tag_action) {
            case MSG_HEAD_OF_Q_TAG:
                  mpt_req->Control |= MPI_SCSIIO_CONTROL_HEADOFQ;
                  break;
            case MSG_ACA_TASK:
                  mpt_req->Control |= MPI_SCSIIO_CONTROL_ACAQ;
                  break;
            case MSG_ORDERED_Q_TAG:
                  mpt_req->Control |= MPI_SCSIIO_CONTROL_ORDEREDQ;
                  break;
            case MSG_SIMPLE_Q_TAG:
            default:
                  mpt_req->Control |= MPI_SCSIIO_CONTROL_SIMPLEQ;
                  break;
            }
      } else {
            if (mpt->is_fc || mpt->is_sas) {
                  mpt_req->Control |= MPI_SCSIIO_CONTROL_SIMPLEQ;
            } else {
                  /* XXX No such thing for a target doing packetized. */
                  mpt_req->Control |= MPI_SCSIIO_CONTROL_UNTAGGED;
            }
      }

      if (mpt->is_spi) {
            if (ccb->ccb_h.flags & CAM_DIS_DISCONNECT) {
                  mpt_req->Control |= MPI_SCSIIO_CONTROL_NO_DISCONNECT;
            }
      }

      /* Copy the scsi command block into place */
      if ((ccb->ccb_h.flags & CAM_CDB_POINTER) != 0) {
            bcopy(csio->cdb_io.cdb_ptr, mpt_req->CDB, csio->cdb_len);
      } else {
            bcopy(csio->cdb_io.cdb_bytes, mpt_req->CDB, csio->cdb_len);
      }

      mpt_req->CDBLength = csio->cdb_len;
      mpt_req->DataLength = htole32(csio->dxfer_len);
      mpt_req->SenseBufferLowAddr = htole32(req->sense_pbuf);

      /*
       * Do a *short* print here if we're set to MPT_PRT_DEBUG
       */
      if (mpt->verbose == MPT_PRT_DEBUG) {
            U32 df;
            mpt_prt(mpt, "mpt_start: %s op 0x%x ",
                (mpt_req->Function == MPI_FUNCTION_SCSI_IO_REQUEST)?
                "SCSI_IO_REQUEST" : "SCSI_IO_PASSTHRU", mpt_req->CDB[0]);
            df = mpt_req->Control & MPI_SCSIIO_CONTROL_DATADIRECTION_MASK;
            if (df != MPI_SCSIIO_CONTROL_NODATATRANSFER) {
                  mpt_prtc(mpt, "(%s %u byte%s ",
                      (df == MPI_SCSIIO_CONTROL_READ)?
                      "read" : "write",  csio->dxfer_len,
                      (csio->dxfer_len == 1)? ")" : "s)");
            }
            mpt_prtc(mpt, "tgt %u lun %u req %p:%u\n", tgt,
                ccb->ccb_h.target_lun, req, req->serno);
      }

      /*
       * If we have any data to send with this command map it into bus space.
       */
      if ((ccbh->flags & CAM_DIR_MASK) != CAM_DIR_NONE) {
            if ((ccbh->flags & CAM_SCATTER_VALID) == 0) {
                  /*
                   * We've been given a pointer to a single buffer.
                   */
                  if ((ccbh->flags & CAM_DATA_PHYS) == 0) {
                        /*
                         * Virtual address that needs to translated into
                         * one or more physical address ranges.
                         */
                        int error;
                        int s = splsoftvm();
                        error = bus_dmamap_load(mpt->buffer_dmat,
                            req->dmap, csio->data_ptr, csio->dxfer_len,
                            cb, req, 0);
                        splx(s);
                        if (error == EINPROGRESS) {
                              /*
                               * So as to maintain ordering,
                               * freeze the controller queue
                               * until our mapping is
                               * returned.
                               */
                              xpt_freeze_simq(mpt->sim, 1);
                              ccbh->status |= CAM_RELEASE_SIMQ;
                        }
                  } else {
                        /*
                         * We have been given a pointer to single
                         * physical buffer.
                         */
                        struct bus_dma_segment seg;
                        seg.ds_addr = 
                            (bus_addr_t)(vm_offset_t)csio->data_ptr;
                        seg.ds_len = csio->dxfer_len;
                        (*cb)(req, &seg, 1, 0);
                  }
            } else {
                  /*
                   * We have been given a list of addresses.
                   * This case could be easily supported but they are not
                   * currently generated by the CAM subsystem so there
                   * is no point in wasting the time right now.
                   */
                  struct bus_dma_segment *segs;
                  if ((ccbh->flags & CAM_SG_LIST_PHYS) == 0) {
                        (*cb)(req, NULL, 0, EFAULT);
                  } else {
                        /* Just use the segments provided */
                        segs = (struct bus_dma_segment *)csio->data_ptr;
                        (*cb)(req, segs, csio->sglist_cnt, 0);
                  }
            }
      } else {
            (*cb)(req, NULL, 0, 0);
      }
}

static int
mpt_bus_reset(struct mpt_softc *mpt, target_id_t tgt, lun_id_t lun,
    int sleep_ok)
{
      int   error;
      uint16_t status;
      uint8_t response;

      error = mpt_scsi_send_tmf(mpt,
          (tgt != CAM_TARGET_WILDCARD || lun != CAM_LUN_WILDCARD) ?
          MPI_SCSITASKMGMT_TASKTYPE_TARGET_RESET :
          MPI_SCSITASKMGMT_TASKTYPE_RESET_BUS,
          mpt->is_fc ? MPI_SCSITASKMGMT_MSGFLAGS_LIP_RESET_OPTION : 0,
          0,      /* XXX How do I get the channel ID? */
          tgt != CAM_TARGET_WILDCARD ? tgt : 0,
          lun != CAM_LUN_WILDCARD ? lun : 0,
          0, sleep_ok);

      if (error != 0) {
            /*
             * mpt_scsi_send_tmf hard resets on failure, so no
             * need to do so here.
             */
            mpt_prt(mpt,
                "mpt_bus_reset: mpt_scsi_send_tmf returned %d\n", error);
            return (EIO);
      }

      /* Wait for bus reset to be processed by the IOC. */
      error = mpt_wait_req(mpt, mpt->tmf_req, REQ_STATE_DONE,
          REQ_STATE_DONE, sleep_ok, 5000);

      status = mpt->tmf_req->IOCStatus;
      response = mpt->tmf_req->ResponseCode;
      mpt->tmf_req->state = REQ_STATE_FREE;

      if (error) {
            mpt_prt(mpt, "mpt_bus_reset: Reset timed-out. "
                "Resetting controller.\n");
            mpt_reset(mpt, TRUE);
            return (ETIMEDOUT);
      }

      if ((status & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) {
            mpt_prt(mpt, "mpt_bus_reset: TMF IOC Status 0x%x. "
                "Resetting controller.\n", status);
            mpt_reset(mpt, TRUE);
            return (EIO);
      }

      if (response != MPI_SCSITASKMGMT_RSP_TM_SUCCEEDED &&
          response != MPI_SCSITASKMGMT_RSP_TM_COMPLETE) {
            mpt_prt(mpt, "mpt_bus_reset: TMF Response 0x%x. "
                "Resetting controller.\n", response);
            mpt_reset(mpt, TRUE);
            return (EIO);
      }
      return (0);
}

static int
mpt_fc_reset_link(struct mpt_softc *mpt, int dowait)
{
      int r = 0;
      request_t *req;
      PTR_MSG_FC_PRIMITIVE_SEND_REQUEST fc;

      req = mpt_get_request(mpt, FALSE);
      if (req == NULL) {
            return (ENOMEM);
      }
      fc = req->req_vbuf;
      memset(fc, 0, sizeof(*fc));
      fc->SendFlags = MPI_FC_PRIM_SEND_FLAGS_RESET_LINK;
      fc->Function = MPI_FUNCTION_FC_PRIMITIVE_SEND;
      fc->MsgContext = htole32(req->index | fc_els_handler_id);
      mpt_send_cmd(mpt, req);
      if (dowait) {
            r = mpt_wait_req(mpt, req, REQ_STATE_DONE,
                REQ_STATE_DONE, FALSE, 60 * 1000);
            if (r == 0) {
                  mpt_free_request(mpt, req);
            }
      }
      return (r);
}

static int
mpt_cam_event(struct mpt_softc *mpt, request_t *req,
            MSG_EVENT_NOTIFY_REPLY *msg)
{
      uint32_t data0, data1;

      data0 = le32toh(msg->Data[0]);
      data1 = le32toh(msg->Data[1]);
      switch(msg->Event & 0xFF) {
      case MPI_EVENT_UNIT_ATTENTION:
            mpt_prt(mpt, "UNIT ATTENTION: Bus: 0x%02x TargetID: 0x%02x\n",
                (data0 >> 8) & 0xff, data0 & 0xff);
            break;

      case MPI_EVENT_IOC_BUS_RESET:
            /* We generated a bus reset */
            mpt_prt(mpt, "IOC Generated Bus Reset Port: %d\n",
                (data0 >> 8) & 0xff);
            xpt_async(AC_BUS_RESET, mpt->path, NULL);
            break;

      case MPI_EVENT_EXT_BUS_RESET:
            /* Someone else generated a bus reset */
            mpt_prt(mpt, "External Bus Reset Detected\n");
            /*
             * These replies don't return EventData like the MPI
             * spec says they do
             */   
            xpt_async(AC_BUS_RESET, mpt->path, NULL);
            break;

      case MPI_EVENT_RESCAN:
#if __FreeBSD_version >= 600000
      {
            union ccb *ccb;
            uint32_t pathid;
            /*
             * In general this means a device has been added to the loop.
             */
            mpt_prt(mpt, "Rescan Port: %d\n", (data0 >> 8) & 0xff);
            if (mpt->ready == 0) {
                  break;
            }
            if (mpt->phydisk_sim) {
                  pathid = cam_sim_path(mpt->phydisk_sim);
            } else {
                  pathid = cam_sim_path(mpt->sim);
            }
            MPTLOCK_2_CAMLOCK(mpt);
            /*
             * Allocate a CCB, create a wildcard path for this bus,
             * and schedule a rescan.
             */
            ccb = xpt_alloc_ccb_nowait();
            if (ccb == NULL) {
                  mpt_prt(mpt, "unable to alloc CCB for rescan\n");
                  CAMLOCK_2_MPTLOCK(mpt);
                  break;
            }

            if (xpt_create_path(&ccb->ccb_h.path, xpt_periph, pathid,
                CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD) != CAM_REQ_CMP) {
                  CAMLOCK_2_MPTLOCK(mpt);
                  mpt_prt(mpt, "unable to create path for rescan\n");
                  xpt_free_ccb(ccb);
                  break;
            }
            xpt_rescan(ccb);
            CAMLOCK_2_MPTLOCK(mpt);
            break;
      }
#else
            mpt_prt(mpt, "Rescan Port: %d\n", (data0 >> 8) & 0xff);
            break;
#endif
      case MPI_EVENT_LINK_STATUS_CHANGE:
            mpt_prt(mpt, "Port %d: LinkState: %s\n",
                (data1 >> 8) & 0xff,
                ((data0 & 0xff) == 0)?  "Failed" : "Active");
            break;

      case MPI_EVENT_LOOP_STATE_CHANGE:
            switch ((data0 >> 16) & 0xff) {
            case 0x01:
                  mpt_prt(mpt,
                      "Port 0x%x: FC LinkEvent: LIP(%02x,%02x) "
                      "(Loop Initialization)\n",
                      (data1 >> 8) & 0xff,
                      (data0 >> 8) & 0xff,
                      (data0     ) & 0xff);
                  switch ((data0 >> 8) & 0xff) {
                  case 0xF7:
                        if ((data0 & 0xff) == 0xF7) {
                              mpt_prt(mpt, "Device needs AL_PA\n");
                        } else {
                              mpt_prt(mpt, "Device %02x doesn't like "
                                  "FC performance\n",
                                  data0 & 0xFF);
                        }
                        break;
                  case 0xF8:
                        if ((data0 & 0xff) == 0xF7) {
                              mpt_prt(mpt, "Device had loop failure "
                                  "at its receiver prior to acquiring"
                                  " AL_PA\n");
                        } else {
                              mpt_prt(mpt, "Device %02x detected loop"
                                  " failure at its receiver\n", 
                                  data0 & 0xFF);
                        }
                        break;
                  default:
                        mpt_prt(mpt, "Device %02x requests that device "
                            "%02x reset itself\n", 
                            data0 & 0xFF,
                            (data0 >> 8) & 0xFF);
                        break;
                  }
                  break;
            case 0x02:
                  mpt_prt(mpt, "Port 0x%x: FC LinkEvent: "
                      "LPE(%02x,%02x) (Loop Port Enable)\n",
                      (data1 >> 8) & 0xff, /* Port */
                      (data0 >>  8) & 0xff, /* Character 3 */
                      (data0      ) & 0xff  /* Character 4 */);
                  break;
            case 0x03:
                  mpt_prt(mpt, "Port 0x%x: FC LinkEvent: "
                      "LPB(%02x,%02x) (Loop Port Bypass)\n",
                      (data1 >> 8) & 0xff, /* Port */
                      (data0 >> 8) & 0xff, /* Character 3 */
                      (data0     ) & 0xff  /* Character 4 */);
                  break;
            default:
                  mpt_prt(mpt, "Port 0x%x: FC LinkEvent: Unknown "
                      "FC event (%02x %02x %02x)\n",
                      (data1 >> 8) & 0xff, /* Port */
                      (data0 >> 16) & 0xff, /* Event */
                      (data0 >>  8) & 0xff, /* Character 3 */
                      (data0      ) & 0xff  /* Character 4 */);
            }
            break;

      case MPI_EVENT_LOGOUT:
            mpt_prt(mpt, "FC Logout Port: %d N_PortID: %02x\n",
                (data1 >> 8) & 0xff, data0);
            break;
      case MPI_EVENT_QUEUE_FULL:
      {
            struct cam_sim *sim;
            struct cam_path *tmppath;
            struct ccb_relsim crs;
            PTR_EVENT_DATA_QUEUE_FULL pqf =
                (PTR_EVENT_DATA_QUEUE_FULL) msg->Data;
            lun_id_t lun_id;

            mpt_prt(mpt, "QUEUE FULL EVENT: Bus 0x%02x Target 0x%02x Depth "
                "%d\n", pqf->Bus, pqf->TargetID, pqf->CurrentDepth);
            if (mpt->phydisk_sim) {
                  sim = mpt->phydisk_sim;
            } else {
                  sim = mpt->sim;
            }
            MPTLOCK_2_CAMLOCK(mpt);
            for (lun_id = 0; lun_id < MPT_MAX_LUNS; lun_id++) {
                  if (xpt_create_path(&tmppath, NULL, cam_sim_path(sim),
                      pqf->TargetID, lun_id) != CAM_REQ_CMP) {
                        mpt_prt(mpt, "unable to create a path to send "
                            "XPT_REL_SIMQ");
                        CAMLOCK_2_MPTLOCK(mpt);
                        break;
                  }
                  xpt_setup_ccb(&crs.ccb_h, tmppath, 5);
                  crs.ccb_h.func_code = XPT_REL_SIMQ;
                  crs.release_flags = RELSIM_ADJUST_OPENINGS;
                  crs.openings = pqf->CurrentDepth - 1;
                  xpt_action((union ccb *)&crs);
                  if (crs.ccb_h.status != CAM_REQ_CMP) {
                        mpt_prt(mpt, "XPT_REL_SIMQ failed\n");
                  }
                  xpt_free_path(tmppath);
            }
            CAMLOCK_2_MPTLOCK(mpt);
            break;
      }
      case MPI_EVENT_EVENT_CHANGE:
      case MPI_EVENT_INTEGRATED_RAID:
      case MPI_EVENT_SAS_DEVICE_STATUS_CHANGE:
      case MPI_EVENT_SAS_SES:
            break;
      default:
            mpt_lprt(mpt, MPT_PRT_WARN, "mpt_cam_event: 0x%x\n",
                msg->Event & 0xFF);
            return (0);
      }
      return (1);
}

/*
 * Reply path for all SCSI I/O requests, called from our
 * interrupt handler by extracting our handler index from
 * the MsgContext field of the reply from the IOC.
 *
 * This routine is optimized for the common case of a
 * completion without error.  All exception handling is
 * offloaded to non-inlined helper routines to minimize
 * cache footprint.
 */
static int
mpt_scsi_reply_handler(struct mpt_softc *mpt, request_t *req,
    uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame)
{
      MSG_SCSI_IO_REQUEST *scsi_req;
      union ccb *ccb;
      target_id_t tgt;

      if (req->state == REQ_STATE_FREE) {
            mpt_prt(mpt, "mpt_scsi_reply_handler: req already free\n");
            return (TRUE);
      }

      scsi_req = (MSG_SCSI_IO_REQUEST *)req->req_vbuf;
      ccb = req->ccb;
      if (ccb == NULL) {
            mpt_prt(mpt, "mpt_scsi_reply_handler: req %p:%u with no ccb\n",
                req, req->serno);
            return (TRUE);
      }

      tgt = scsi_req->TargetID;
      mpt_req_untimeout(req, mpt_timeout, ccb);
      ccb->ccb_h.status &= ~CAM_SIM_QUEUED;

      if ((ccb->ccb_h.flags & CAM_DIR_MASK) != CAM_DIR_NONE) {
            bus_dmasync_op_t op;

            if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN)
                  op = BUS_DMASYNC_POSTREAD;
            else
                  op = BUS_DMASYNC_POSTWRITE;
            bus_dmamap_sync(mpt->buffer_dmat, req->dmap, op);
            bus_dmamap_unload(mpt->buffer_dmat, req->dmap);
      }

      if (reply_frame == NULL) {
            /*
             * Context only reply, completion without error status.
             */
            ccb->csio.resid = 0;
            mpt_set_ccb_status(ccb, CAM_REQ_CMP);
            ccb->csio.scsi_status = SCSI_STATUS_OK;
      } else {
            mpt_scsi_reply_frame_handler(mpt, req, reply_frame);
      }

      if (mpt->outofbeer) {
            ccb->ccb_h.status |= CAM_RELEASE_SIMQ;
            mpt->outofbeer = 0;
            mpt_lprt(mpt, MPT_PRT_DEBUG, "THAWQ\n");
      }
      if (scsi_req->CDB[0] == INQUIRY && (scsi_req->CDB[1] & SI_EVPD) == 0) {
            struct scsi_inquiry_data *iq = 
                (struct scsi_inquiry_data *)ccb->csio.data_ptr;
            if (scsi_req->Function ==
                MPI_FUNCTION_RAID_SCSI_IO_PASSTHROUGH) {
                  /*
                   * Fake out the device type so that only the
                   * pass-thru device will attach.
                   */
                  iq->device &= ~0x1F;
                  iq->device |= T_NODEVICE;
            }
      }
      if (mpt->verbose == MPT_PRT_DEBUG) {
            mpt_prt(mpt, "mpt_scsi_reply_handler: %p:%u complete\n",
                req, req->serno);
      }
      KASSERT(ccb->ccb_h.status, ("zero ccb sts at %d\n", __LINE__));
      MPTLOCK_2_CAMLOCK(mpt);
      xpt_done(ccb);
      CAMLOCK_2_MPTLOCK(mpt);
      if ((req->state & REQ_STATE_TIMEDOUT) == 0) {
            TAILQ_REMOVE(&mpt->request_pending_list, req, links);
      } else {
            mpt_prt(mpt, "completing timedout/aborted req %p:%u\n",
                req, req->serno);
            TAILQ_REMOVE(&mpt->request_timeout_list, req, links);
      }
      KASSERT((req->state & REQ_STATE_NEED_WAKEUP) == 0,
          ("CCB req needed wakeup"));
#ifdef      INVARIANTS
      mpt_req_not_spcl(mpt, req, "mpt_scsi_reply_handler", __LINE__);
#endif
      mpt_free_request(mpt, req);
      return (TRUE);
}

static int
mpt_scsi_tmf_reply_handler(struct mpt_softc *mpt, request_t *req,
    uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame)
{
      MSG_SCSI_TASK_MGMT_REPLY *tmf_reply;

      KASSERT(req == mpt->tmf_req, ("TMF Reply not using mpt->tmf_req"));
#ifdef      INVARIANTS
      mpt_req_not_spcl(mpt, req, "mpt_scsi_tmf_reply_handler", __LINE__);
#endif
      tmf_reply = (MSG_SCSI_TASK_MGMT_REPLY *)reply_frame;
      /* Record IOC Status and Response Code of TMF for any waiters. */
      req->IOCStatus = le16toh(tmf_reply->IOCStatus);
      req->ResponseCode = tmf_reply->ResponseCode;

      mpt_lprt(mpt, MPT_PRT_DEBUG, "TMF complete: req %p:%u status 0x%x\n",
          req, req->serno, le16toh(tmf_reply->IOCStatus));
      TAILQ_REMOVE(&mpt->request_pending_list, req, links);
      if ((req->state & REQ_STATE_NEED_WAKEUP) != 0) {
            req->state |= REQ_STATE_DONE;
            wakeup(req);
      } else {
            mpt->tmf_req->state = REQ_STATE_FREE;
      }
      return (TRUE);
}

/*
 * XXX: Move to definitions file
 */
#define     ELS   0x22
#define     FC4LS 0x32
#define     ABTS  0x81
#define     BA_ACC      0x84

#define     LS_RJT      0x01 
#define     LS_ACC      0x02
#define     PLOGI 0x03
#define     LOGO  0x05
#define SRR 0x14
#define PRLI      0x20
#define PRLO      0x21
#define ADISC     0x52
#define RSCN      0x61

static void
mpt_fc_els_send_response(struct mpt_softc *mpt, request_t *req,
    PTR_MSG_LINK_SERVICE_BUFFER_POST_REPLY rp, U8 length)
{
      uint32_t fl;
      MSG_LINK_SERVICE_RSP_REQUEST tmp;
      PTR_MSG_LINK_SERVICE_RSP_REQUEST rsp;

      /*
       * We are going to reuse the ELS request to send this response back.
       */
      rsp = &tmp;
      memset(rsp, 0, sizeof(*rsp));

#ifdef      USE_IMMEDIATE_LINK_DATA
      /*
       * Apparently the IMMEDIATE stuff doesn't seem to work.
       */
      rsp->RspFlags = LINK_SERVICE_RSP_FLAGS_IMMEDIATE;
#endif
      rsp->RspLength = length;
      rsp->Function = MPI_FUNCTION_FC_LINK_SRVC_RSP;
      rsp->MsgContext = htole32(req->index | fc_els_handler_id);

      /*
       * Copy over information from the original reply frame to
       * it's correct place in the response.
       */
      memcpy((U8 *)rsp + 0x0c, (U8 *)rp + 0x1c, 24);

      /*
       * And now copy back the temporary area to the original frame.
       */
      memcpy(req->req_vbuf, rsp, sizeof (MSG_LINK_SERVICE_RSP_REQUEST));
      rsp = req->req_vbuf;

#ifdef      USE_IMMEDIATE_LINK_DATA
      memcpy((U8 *)&rsp->SGL, &((U8 *)req->req_vbuf)[MPT_RQSL(mpt)], length);
#else
{
      PTR_SGE_SIMPLE32 se = (PTR_SGE_SIMPLE32) &rsp->SGL;
      bus_addr_t paddr = req->req_pbuf;
      paddr += MPT_RQSL(mpt);

      fl =
            MPI_SGE_FLAGS_HOST_TO_IOC     |
            MPI_SGE_FLAGS_SIMPLE_ELEMENT  |
            MPI_SGE_FLAGS_LAST_ELEMENT    |
            MPI_SGE_FLAGS_END_OF_LIST     |
            MPI_SGE_FLAGS_END_OF_BUFFER;
      fl <<= MPI_SGE_FLAGS_SHIFT;
      fl |= (length);
      se->FlagsLength = htole32(fl);
      se->Address = htole32((uint32_t) paddr);
}
#endif

      /*
       * Send it on...
       */
      mpt_send_cmd(mpt, req);
}

static int
mpt_fc_els_reply_handler(struct mpt_softc *mpt, request_t *req,
    uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame)
{
      PTR_MSG_LINK_SERVICE_BUFFER_POST_REPLY rp =
          (PTR_MSG_LINK_SERVICE_BUFFER_POST_REPLY) reply_frame;
      U8 rctl;
      U8 type;
      U8 cmd;
      U16 status = le16toh(reply_frame->IOCStatus);
      U32 *elsbuf;
      int ioindex;
      int do_refresh = TRUE;

#ifdef      INVARIANTS
      KASSERT(mpt_req_on_free_list(mpt, req) == 0,
          ("fc_els_reply_handler: req %p:%u for function %x on freelist!",
          req, req->serno, rp->Function));
      if (rp->Function != MPI_FUNCTION_FC_PRIMITIVE_SEND) {
            mpt_req_spcl(mpt, req, "fc_els_reply_handler", __LINE__);
      } else {
            mpt_req_not_spcl(mpt, req, "fc_els_reply_handler", __LINE__);
      }
#endif
      mpt_lprt(mpt, MPT_PRT_DEBUG,
          "FC_ELS Complete: req %p:%u, reply %p function %x\n",
          req, req->serno, reply_frame, reply_frame->Function);

      if  (status != MPI_IOCSTATUS_SUCCESS) {
            mpt_prt(mpt, "ELS REPLY STATUS 0x%x for Function %x\n",
                status, reply_frame->Function);
            if (status == MPI_IOCSTATUS_INVALID_STATE) {
                  /*
                   * XXX: to get around shutdown issue
                   */
                  mpt->disabled = 1;
                  return (TRUE);
            }
            return (TRUE);
      }

      /*
       * If the function of a link service response, we recycle the
       * response to be a refresh for a new link service request.
       *
       * The request pointer is bogus in this case and we have to fetch
       * it based upon the TransactionContext.
       */
      if (rp->Function == MPI_FUNCTION_FC_LINK_SRVC_RSP) {
            /* Freddie Uncle Charlie Katie */
            /* We don't get the IOINDEX as part of the Link Svc Rsp */
            for (ioindex = 0; ioindex < mpt->els_cmds_allocated; ioindex++)
                  if (mpt->els_cmd_ptrs[ioindex] == req) {
                        break;
                  }

            KASSERT(ioindex < mpt->els_cmds_allocated,
                ("can't find my mommie!"));

            /* remove from active list as we're going to re-post it */
            TAILQ_REMOVE(&mpt->request_pending_list, req, links);
            req->state &= ~REQ_STATE_QUEUED;
            req->state |= REQ_STATE_DONE;
            mpt_fc_post_els(mpt, req, ioindex);
            return (TRUE);
      }

      if (rp->Function == MPI_FUNCTION_FC_PRIMITIVE_SEND) {
            /* remove from active list as we're done */
            TAILQ_REMOVE(&mpt->request_pending_list, req, links);
            req->state &= ~REQ_STATE_QUEUED;
            req->state |= REQ_STATE_DONE;
            if (req->state & REQ_STATE_TIMEDOUT) {
                  mpt_lprt(mpt, MPT_PRT_DEBUG,
                      "Sync Primitive Send Completed After Timeout\n");
                  mpt_free_request(mpt, req);
            } else if ((req->state & REQ_STATE_NEED_WAKEUP) == 0) {
                  mpt_lprt(mpt, MPT_PRT_DEBUG,
                      "Async Primitive Send Complete\n");
                  mpt_free_request(mpt, req);
            } else {
                  mpt_lprt(mpt, MPT_PRT_DEBUG,
                      "Sync Primitive Send Complete- Waking Waiter\n");
                  wakeup(req);
            }
            return (TRUE);
      }

      if (rp->Function != MPI_FUNCTION_FC_LINK_SRVC_BUF_POST) {
            mpt_prt(mpt, "unexpected ELS_REPLY: Function 0x%x Flags %x "
                "Length %d Message Flags %x\n", rp->Function, rp->Flags,
                rp->MsgLength, rp->MsgFlags);
            return (TRUE);
      }

      if (rp->MsgLength <= 5) {
            /*
             * This is just a ack of an original ELS buffer post
             */
            mpt_lprt(mpt, MPT_PRT_DEBUG,
                "RECV'd ACK of FC_ELS buf post %p:%u\n", req, req->serno);
            return (TRUE);
      }


      rctl = (le32toh(rp->Rctl_Did) & MPI_FC_RCTL_MASK) >> MPI_FC_RCTL_SHIFT;
      type = (le32toh(rp->Type_Fctl) & MPI_FC_TYPE_MASK) >> MPI_FC_TYPE_SHIFT;

      elsbuf = &((U32 *)req->req_vbuf)[MPT_RQSL(mpt)/sizeof (U32)];
      cmd = be32toh(elsbuf[0]) >> 24;

      if (rp->Flags & MPI_LS_BUF_POST_REPLY_FLAG_NO_RSP_NEEDED) {
            mpt_lprt(mpt, MPT_PRT_ALWAYS, "ELS_REPLY: response unneeded\n");
            return (TRUE);
      }

      ioindex = le32toh(rp->TransactionContext);
      req = mpt->els_cmd_ptrs[ioindex];

      if (rctl == ELS && type == 1) {
            switch (cmd) {
            case PRLI:
                  /*
                   * Send back a PRLI ACC
                   */
                  mpt_prt(mpt, "PRLI from 0x%08x%08x\n",
                      le32toh(rp->Wwn.PortNameHigh),
                      le32toh(rp->Wwn.PortNameLow));
                  elsbuf[0] = htobe32(0x02100014);
                  elsbuf[1] |= htobe32(0x00000100);
                  elsbuf[4] = htobe32(0x00000002);
                  if (mpt->role & MPT_ROLE_TARGET)
                        elsbuf[4] |= htobe32(0x00000010);
                  if (mpt->role & MPT_ROLE_INITIATOR)
                        elsbuf[4] |= htobe32(0x00000020);
                  /* remove from active list as we're done */
                  TAILQ_REMOVE(&mpt->request_pending_list, req, links);
                  req->state &= ~REQ_STATE_QUEUED;
                  req->state |= REQ_STATE_DONE;
                  mpt_fc_els_send_response(mpt, req, rp, 20);
                  do_refresh = FALSE;
                  break;
            case PRLO:
                  memset(elsbuf, 0, 5 * (sizeof (U32)));
                  elsbuf[0] = htobe32(0x02100014);
                  elsbuf[1] = htobe32(0x08000100);
                  mpt_prt(mpt, "PRLO from 0x%08x%08x\n",
                      le32toh(rp->Wwn.PortNameHigh),
                      le32toh(rp->Wwn.PortNameLow));
                  /* remove from active list as we're done */
                  TAILQ_REMOVE(&mpt->request_pending_list, req, links);
                  req->state &= ~REQ_STATE_QUEUED;
                  req->state |= REQ_STATE_DONE;
                  mpt_fc_els_send_response(mpt, req, rp, 20);
                  do_refresh = FALSE;
                  break;
            default:
                  mpt_prt(mpt, "ELS TYPE 1 COMMAND: %x\n", cmd);
                  break;
            }
      } else if (rctl == ABTS && type == 0) {
            uint16_t rx_id = le16toh(rp->Rxid);
            uint16_t ox_id = le16toh(rp->Oxid);
            request_t *tgt_req = NULL;

            mpt_prt(mpt,
                "ELS: ABTS OX_ID 0x%x RX_ID 0x%x from 0x%08x%08x\n",
                ox_id, rx_id, le32toh(rp->Wwn.PortNameHigh),
                le32toh(rp->Wwn.PortNameLow));
            if (rx_id >= mpt->mpt_max_tgtcmds) {
                  mpt_prt(mpt, "Bad RX_ID 0x%x\n", rx_id);
            } else if (mpt->tgt_cmd_ptrs == NULL) {
                  mpt_prt(mpt, "No TGT CMD PTRS\n");
            } else {
                  tgt_req = mpt->tgt_cmd_ptrs[rx_id];
            }
            if (tgt_req) {
                  mpt_tgt_state_t *tgt = MPT_TGT_STATE(mpt, tgt_req);
                  uint8_t *vbuf;
                  union ccb *ccb = tgt->ccb;
                  uint32_t ct_id;

                  vbuf = tgt_req->req_vbuf;
                  vbuf += MPT_RQSL(mpt);

                  /*
                   * Check to make sure we have the correct command
                   * The reply descriptor in the target state should
                   * should contain an IoIndex that should match the
                   * RX_ID.
                   *
                   * It'd be nice to have OX_ID to crosscheck with
                   * as well.
                   */
                  ct_id = GET_IO_INDEX(tgt->reply_desc);

                  if (ct_id != rx_id) {
                        mpt_lprt(mpt, MPT_PRT_ERROR, "ABORT Mismatch: "
                            "RX_ID received=0x%x; RX_ID in cmd=0x%x\n",
                            rx_id, ct_id);
                        goto skip;
                  }

                  ccb = tgt->ccb;
                  if (ccb) {
                        mpt_prt(mpt,
                            "CCB (%p): lun %u flags %x status %x\n",
                            ccb, ccb->ccb_h.target_lun,
                            ccb->ccb_h.flags, ccb->ccb_h.status);
                  }
                  mpt_prt(mpt, "target state 0x%x resid %u xfrd %u rpwrd "
                      "%x nxfers %x\n", tgt->state,
                      tgt->resid, tgt->bytes_xfered, tgt->reply_desc,
                      tgt->nxfers);
  skip:
                  if (mpt_abort_target_cmd(mpt, tgt_req)) {
                        mpt_prt(mpt, "unable to start TargetAbort\n");
                  }
            } else {
                  mpt_prt(mpt, "no back pointer for RX_ID 0x%x\n", rx_id);
            }
            memset(elsbuf, 0, 5 * (sizeof (U32)));
            elsbuf[0] = htobe32(0);
            elsbuf[1] = htobe32((ox_id << 16) | rx_id);
            elsbuf[2] = htobe32(0x000ffff);
            /*
             * Dork with the reply frame so that the reponse to it
             * will be correct.
             */
            rp->Rctl_Did += ((BA_ACC - ABTS) << MPI_FC_RCTL_SHIFT);
            /* remove from active list as we're done */
            TAILQ_REMOVE(&mpt->request_pending_list, req, links);
            req->state &= ~REQ_STATE_QUEUED;
            req->state |= REQ_STATE_DONE;
            mpt_fc_els_send_response(mpt, req, rp, 12);
            do_refresh = FALSE;
      } else {
            mpt_prt(mpt, "ELS: RCTL %x TYPE %x CMD %x\n", rctl, type, cmd);
      }
      if (do_refresh == TRUE) {
            /* remove from active list as we're done */
            TAILQ_REMOVE(&mpt->request_pending_list, req, links);
            req->state &= ~REQ_STATE_QUEUED;
            req->state |= REQ_STATE_DONE;
            mpt_fc_post_els(mpt, req, ioindex);
      }
      return (TRUE);
}

/*
 * Clean up all SCSI Initiator personality state in response
 * to a controller reset.
 */
static void
mpt_cam_ioc_reset(struct mpt_softc *mpt, int type)
{
      /*
       * The pending list is already run down by
       * the generic handler.  Perform the same
       * operation on the timed out request list.
       */
      mpt_complete_request_chain(mpt, &mpt->request_timeout_list,
                           MPI_IOCSTATUS_INVALID_STATE);

      /*
       * XXX: We need to repost ELS and Target Command Buffers?
       */

      /*
       * Inform the XPT that a bus reset has occurred.
       */
      xpt_async(AC_BUS_RESET, mpt->path, NULL);
}

/*
 * Parse additional completion information in the reply
 * frame for SCSI I/O requests.
 */
static int
mpt_scsi_reply_frame_handler(struct mpt_softc *mpt, request_t *req,
                       MSG_DEFAULT_REPLY *reply_frame)
{
      union ccb *ccb;
      MSG_SCSI_IO_REPLY *scsi_io_reply;
      u_int ioc_status;
      u_int sstate;
      u_int loginfo;

      MPT_DUMP_REPLY_FRAME(mpt, reply_frame);
      KASSERT(reply_frame->Function == MPI_FUNCTION_SCSI_IO_REQUEST
           || reply_frame->Function == MPI_FUNCTION_RAID_SCSI_IO_PASSTHROUGH,
            ("MPT SCSI I/O Handler called with incorrect reply type"));
      KASSERT((reply_frame->MsgFlags & MPI_MSGFLAGS_CONTINUATION_REPLY) == 0,
            ("MPT SCSI I/O Handler called with continuation reply"));

      scsi_io_reply = (MSG_SCSI_IO_REPLY *)reply_frame;
      ioc_status = le16toh(scsi_io_reply->IOCStatus);
      loginfo = ioc_status & MPI_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE;
      ioc_status &= MPI_IOCSTATUS_MASK;
      sstate = scsi_io_reply->SCSIState;

      ccb = req->ccb;
      ccb->csio.resid =
          ccb->csio.dxfer_len - le32toh(scsi_io_reply->TransferCount);

      if ((sstate & MPI_SCSI_STATE_AUTOSENSE_VALID) != 0
       && (ccb->ccb_h.flags & (CAM_SENSE_PHYS | CAM_SENSE_PTR)) == 0) {
            ccb->ccb_h.status |= CAM_AUTOSNS_VALID;
            ccb->csio.sense_resid =
                ccb->csio.sense_len - scsi_io_reply->SenseCount;
            bcopy(req->sense_vbuf, &ccb->csio.sense_data,
                  min(ccb->csio.sense_len, scsi_io_reply->SenseCount));
      }

      if ((sstate & MPI_SCSI_STATE_QUEUE_TAG_REJECTED) != 0) {
            /*
             * Tag messages rejected, but non-tagged retry
             * was successful.
XXXX
            mpt_set_tags(mpt, devinfo, MPT_QUEUE_NONE);
             */
      }

      switch(ioc_status) {
      case MPI_IOCSTATUS_SCSI_RESIDUAL_MISMATCH:
            /*
             * XXX
             * Linux driver indicates that a zero
             * transfer length with this error code
             * indicates a CRC error.
             *
             * No need to swap the bytes for checking
             * against zero.
             */
            if (scsi_io_reply->TransferCount == 0) {
                  mpt_set_ccb_status(ccb, CAM_UNCOR_PARITY);
                  break;
            }
            /* FALLTHROUGH */
      case MPI_IOCSTATUS_SCSI_DATA_UNDERRUN:
      case MPI_IOCSTATUS_SUCCESS:
      case MPI_IOCSTATUS_SCSI_RECOVERED_ERROR:
            if ((sstate & MPI_SCSI_STATE_NO_SCSI_STATUS) != 0) {
                  /*
                   * Status was never returned for this transaction.
                   */
                  mpt_set_ccb_status(ccb, CAM_UNEXP_BUSFREE);
            } else if (scsi_io_reply->SCSIStatus != SCSI_STATUS_OK) {
                  ccb->csio.scsi_status = scsi_io_reply->SCSIStatus;
                  mpt_set_ccb_status(ccb, CAM_SCSI_STATUS_ERROR);
                  if ((sstate & MPI_SCSI_STATE_AUTOSENSE_FAILED) != 0)
                        mpt_set_ccb_status(ccb, CAM_AUTOSENSE_FAIL);
            } else if ((sstate & MPI_SCSI_STATE_RESPONSE_INFO_VALID) != 0) {

                  /* XXX Handle SPI-Packet and FCP-2 reponse info. */
                  mpt_set_ccb_status(ccb, CAM_REQ_CMP_ERR);
            } else
                  mpt_set_ccb_status(ccb, CAM_REQ_CMP);
            break;
      case MPI_IOCSTATUS_SCSI_DATA_OVERRUN:
            mpt_set_ccb_status(ccb, CAM_DATA_RUN_ERR);
            break;
      case MPI_IOCSTATUS_SCSI_IO_DATA_ERROR:
            mpt_set_ccb_status(ccb, CAM_UNCOR_PARITY);
            break;
      case MPI_IOCSTATUS_SCSI_DEVICE_NOT_THERE:
            /*
             * Since selection timeouts and "device really not
             * there" are grouped into this error code, report
             * selection timeout.  Selection timeouts are
             * typically retried before giving up on the device
             * whereas "device not there" errors are considered
             * unretryable.
             */
            mpt_set_ccb_status(ccb, CAM_SEL_TIMEOUT);
            break;
      case MPI_IOCSTATUS_SCSI_PROTOCOL_ERROR:
            mpt_set_ccb_status(ccb, CAM_SEQUENCE_FAIL);
            break;
      case MPI_IOCSTATUS_SCSI_INVALID_BUS:
            mpt_set_ccb_status(ccb, CAM_PATH_INVALID);
            break;
      case MPI_IOCSTATUS_SCSI_INVALID_TARGETID:
            mpt_set_ccb_status(ccb, CAM_TID_INVALID);
            break;
      case MPI_IOCSTATUS_SCSI_TASK_MGMT_FAILED:
            ccb->ccb_h.status = CAM_UA_TERMIO;
            break;
      case MPI_IOCSTATUS_INVALID_STATE:
            /*
             * The IOC has been reset.  Emulate a bus reset.
             */
            /* FALLTHROUGH */
      case MPI_IOCSTATUS_SCSI_EXT_TERMINATED:
            ccb->ccb_h.status = CAM_SCSI_BUS_RESET; 
            break;
      case MPI_IOCSTATUS_SCSI_TASK_TERMINATED:
      case MPI_IOCSTATUS_SCSI_IOC_TERMINATED:
            /*
             * Don't clobber any timeout status that has
             * already been set for this transaction.  We
             * want the SCSI layer to be able to differentiate
             * between the command we aborted due to timeout
             * and any innocent bystanders.
             */
            if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_INPROG)
                  break;
            mpt_set_ccb_status(ccb, CAM_REQ_TERMIO);
            break;

      case MPI_IOCSTATUS_INSUFFICIENT_RESOURCES:
            mpt_set_ccb_status(ccb, CAM_RESRC_UNAVAIL);
            break;
      case MPI_IOCSTATUS_BUSY:
            mpt_set_ccb_status(ccb, CAM_BUSY);
            break;
      case MPI_IOCSTATUS_INVALID_FUNCTION:
      case MPI_IOCSTATUS_INVALID_SGL:
      case MPI_IOCSTATUS_INTERNAL_ERROR:
      case MPI_IOCSTATUS_INVALID_FIELD:
      default:
            /* XXX
             * Some of the above may need to kick
             * of a recovery action!!!!
             */
            ccb->ccb_h.status = CAM_UNREC_HBA_ERROR;
            break;
      }

      if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
            mpt_freeze_ccb(ccb);
      }

      return (TRUE);
}

static void
mpt_action(struct cam_sim *sim, union ccb *ccb)
{
      struct mpt_softc *mpt;
      struct ccb_trans_settings *cts;
      target_id_t tgt;
      lun_id_t lun;
      int raid_passthru;

      CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, ("mpt_action\n"));

      mpt = (struct mpt_softc *)cam_sim_softc(sim);
      raid_passthru = (sim == mpt->phydisk_sim);
      MPT_LOCK_ASSERT(mpt);

      tgt = ccb->ccb_h.target_id;
      lun = ccb->ccb_h.target_lun;
      if (raid_passthru &&
          ccb->ccb_h.func_code != XPT_PATH_INQ &&
          ccb->ccb_h.func_code != XPT_RESET_BUS &&
          ccb->ccb_h.func_code != XPT_RESET_DEV) {
            CAMLOCK_2_MPTLOCK(mpt);
            if (mpt_map_physdisk(mpt, ccb, &tgt) != 0) {
                  MPTLOCK_2_CAMLOCK(mpt);
                  ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
                  mpt_set_ccb_status(ccb, CAM_DEV_NOT_THERE);
                  xpt_done(ccb);
                  return;
            }
            MPTLOCK_2_CAMLOCK(mpt);
      }
      ccb->ccb_h.ccb_mpt_ptr = mpt;

      switch (ccb->ccb_h.func_code) {
      case XPT_SCSI_IO: /* Execute the requested I/O operation */
            /*
             * Do a couple of preliminary checks...
             */
            if ((ccb->ccb_h.flags & CAM_CDB_POINTER) != 0) {
                  if ((ccb->ccb_h.flags & CAM_CDB_PHYS) != 0) {
                        ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
                        mpt_set_ccb_status(ccb, CAM_REQ_INVALID);
                        break;
                  }
            }
            /* Max supported CDB length is 16 bytes */
            /* XXX Unless we implement the new 32byte message type */
            if (ccb->csio.cdb_len >
                sizeof (((PTR_MSG_SCSI_IO_REQUEST)0)->CDB)) {
                  ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
                  mpt_set_ccb_status(ccb, CAM_REQ_INVALID);
                  break;
            }
#ifdef      MPT_TEST_MULTIPATH
            if (mpt->failure_id == ccb->ccb_h.target_id) {
                  ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
                  mpt_set_ccb_status(ccb, CAM_SEL_TIMEOUT);
                  break;
            }
#endif
            ccb->csio.scsi_status = SCSI_STATUS_OK;
            mpt_start(sim, ccb);
            return;

      case XPT_RESET_BUS:
            if (raid_passthru) {
                  ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
                  mpt_set_ccb_status(ccb, CAM_REQ_CMP);
                  break;
            }
      case XPT_RESET_DEV:
            if (ccb->ccb_h.func_code == XPT_RESET_BUS) {
                  if (bootverbose) {
                        xpt_print(ccb->ccb_h.path, "reset bus\n");
                  }
            } else {
                  xpt_print(ccb->ccb_h.path, "reset device\n");
            }
            CAMLOCK_2_MPTLOCK(mpt);
            (void) mpt_bus_reset(mpt, tgt, lun, FALSE);
            MPTLOCK_2_CAMLOCK(mpt);

            /*
             * mpt_bus_reset is always successful in that it
             * will fall back to a hard reset should a bus
             * reset attempt fail.
             */
            ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
            mpt_set_ccb_status(ccb, CAM_REQ_CMP);
            break;
            
      case XPT_ABORT:
      {
            union ccb *accb = ccb->cab.abort_ccb;
            CAMLOCK_2_MPTLOCK(mpt);
            switch (accb->ccb_h.func_code) {
            case XPT_ACCEPT_TARGET_IO:
            case XPT_IMMED_NOTIFY:
                  ccb->ccb_h.status = mpt_abort_target_ccb(mpt, ccb);
                  break;
            case XPT_CONT_TARGET_IO:
                  mpt_prt(mpt, "cannot abort active CTIOs yet\n");
                  ccb->ccb_h.status = CAM_UA_ABORT;
                  break;
            case XPT_SCSI_IO:
                  ccb->ccb_h.status = CAM_UA_ABORT;
                  break;
            default:
                  ccb->ccb_h.status = CAM_REQ_INVALID;
                  break;
            }
            MPTLOCK_2_CAMLOCK(mpt);
            break;
      }

#ifdef      CAM_NEW_TRAN_CODE
#define     IS_CURRENT_SETTINGS(c)  ((c)->type == CTS_TYPE_CURRENT_SETTINGS)
#else
#define     IS_CURRENT_SETTINGS(c)  ((c)->flags & CCB_TRANS_CURRENT_SETTINGS)
#endif
#define     DP_DISC_ENABLE    0x1
#define     DP_DISC_DISABL    0x2
#define     DP_DISC           (DP_DISC_ENABLE|DP_DISC_DISABL)

#define     DP_TQING_ENABLE   0x4
#define     DP_TQING_DISABL   0x8
#define     DP_TQING    (DP_TQING_ENABLE|DP_TQING_DISABL)

#define     DP_WIDE           0x10
#define     DP_NARROW   0x20
#define     DP_WIDTH    (DP_WIDE|DP_NARROW)

#define     DP_SYNC           0x40

      case XPT_SET_TRAN_SETTINGS:   /* Nexus Settings */
      {
#ifdef      CAM_NEW_TRAN_CODE
            struct ccb_trans_settings_scsi *scsi;
            struct ccb_trans_settings_spi *spi;
#endif
            uint8_t dval;
            u_int period;
            u_int offset;
            int i, j;

            cts = &ccb->cts;

            if (mpt->is_fc || mpt->is_sas) {
                  mpt_set_ccb_status(ccb, CAM_REQ_CMP);
                  break;
            }

#ifdef      CAM_NEW_TRAN_CODE
            scsi = &cts->proto_specific.scsi;
            spi = &cts->xport_specific.spi;

            /*
             * We can be called just to valid transport and proto versions
             */
            if (scsi->valid == 0 && spi->valid == 0) {
                  mpt_set_ccb_status(ccb, CAM_REQ_CMP);
                  break;
            }
#endif

            /*
             * Skip attempting settings on RAID volume disks.
             * Other devices on the bus get the normal treatment.
             */
            if (mpt->phydisk_sim && raid_passthru == 0 &&
                mpt_is_raid_volume(mpt, tgt) != 0) {
                  mpt_lprt(mpt, MPT_PRT_NEGOTIATION,
                      "no transfer settings for RAID vols\n");
                  mpt_set_ccb_status(ccb, CAM_REQ_CMP);
                  break;
            }

            i = mpt->mpt_port_page2.PortSettings &
                MPI_SCSIPORTPAGE2_PORT_MASK_NEGO_MASTER_SETTINGS;
            j = mpt->mpt_port_page2.PortFlags &
                MPI_SCSIPORTPAGE2_PORT_FLAGS_DV_MASK;
            if (i == MPI_SCSIPORTPAGE2_PORT_ALL_MASTER_SETTINGS &&
                j == MPI_SCSIPORTPAGE2_PORT_FLAGS_OFF_DV) {
                  mpt_lprt(mpt, MPT_PRT_ALWAYS,
                      "honoring BIOS transfer negotiations\n");
                  mpt_set_ccb_status(ccb, CAM_REQ_CMP);
                  break;
            }

            dval = 0;
            period = 0;
            offset = 0;

#ifndef     CAM_NEW_TRAN_CODE
            if ((cts->valid & CCB_TRANS_DISC_VALID) != 0) {
                  dval |= (cts->flags & CCB_TRANS_DISC_ENB) ?
                      DP_DISC_ENABLE : DP_DISC_DISABL;
            }

            if ((cts->valid & CCB_TRANS_TQ_VALID) != 0) {
                  dval |= (cts->flags & CCB_TRANS_TAG_ENB) ?
                      DP_TQING_ENABLE : DP_TQING_DISABL;
            }

            if ((cts->valid & CCB_TRANS_BUS_WIDTH_VALID) != 0) {
                  dval |= cts->bus_width ? DP_WIDE : DP_NARROW;
            }

            if ((cts->valid & CCB_TRANS_SYNC_RATE_VALID) &&
                (cts->valid & CCB_TRANS_SYNC_OFFSET_VALID)) {
                  dval |= DP_SYNC;
                  period = cts->sync_period;
                  offset = cts->sync_offset;
            }
#else
            if ((spi->valid & CTS_SPI_VALID_DISC) != 0) {
                  dval |= ((spi->flags & CTS_SPI_FLAGS_DISC_ENB) != 0) ?
                      DP_DISC_ENABLE : DP_DISC_DISABL;
            }

            if ((scsi->valid & CTS_SCSI_VALID_TQ) != 0) {
                  dval |= ((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0) ?
                      DP_TQING_ENABLE : DP_TQING_DISABL;
            }

            if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0) {
                  dval |= (spi->bus_width == MSG_EXT_WDTR_BUS_16_BIT) ?
                      DP_WIDE : DP_NARROW;
            }

            if (spi->valid & CTS_SPI_VALID_SYNC_OFFSET) {
                  dval |= DP_SYNC;
                  offset = spi->sync_offset;
            } else {
                  PTR_CONFIG_PAGE_SCSI_DEVICE_1 ptr =
                      &mpt->mpt_dev_page1[tgt];
                  offset = ptr->RequestedParameters;
                  offset &= MPI_SCSIDEVPAGE1_RP_MAX_SYNC_OFFSET_MASK;
                  offset >>= MPI_SCSIDEVPAGE1_RP_SHIFT_MAX_SYNC_OFFSET;
            }
            if (spi->valid & CTS_SPI_VALID_SYNC_RATE) {
                  dval |= DP_SYNC;
                  period = spi->sync_period;
            } else {
                  PTR_CONFIG_PAGE_SCSI_DEVICE_1 ptr =
                      &mpt->mpt_dev_page1[tgt];
                  period = ptr->RequestedParameters;
                  period &= MPI_SCSIDEVPAGE1_RP_MIN_SYNC_PERIOD_MASK;
                  period >>= MPI_SCSIDEVPAGE1_RP_SHIFT_MIN_SYNC_PERIOD;
            }
#endif
            CAMLOCK_2_MPTLOCK(mpt);
            if (dval & DP_DISC_ENABLE) {
                  mpt->mpt_disc_enable |= (1 << tgt);
            } else if (dval & DP_DISC_DISABL) {
                  mpt->mpt_disc_enable &= ~(1 << tgt);
            }
            if (dval & DP_TQING_ENABLE) {
                  mpt->mpt_tag_enable |= (1 << tgt);
            } else if (dval & DP_TQING_DISABL) {
                  mpt->mpt_tag_enable &= ~(1 << tgt);
            }
            if (dval & DP_WIDTH) {
                  mpt_setwidth(mpt, tgt, 1);
            }
            if (dval & DP_SYNC) {
                  mpt_setsync(mpt, tgt, period, offset);
            }
            if (dval == 0) {
                  MPTLOCK_2_CAMLOCK(mpt);
                  mpt_set_ccb_status(ccb, CAM_REQ_CMP);
                  break;
            }
            mpt_lprt(mpt, MPT_PRT_NEGOTIATION,
                "set [%d]: 0x%x period 0x%x offset %d\n",
                tgt, dval, period, offset);
            if (mpt_update_spi_config(mpt, tgt)) {
                  mpt_set_ccb_status(ccb, CAM_REQ_CMP_ERR);
            } else {
                  mpt_set_ccb_status(ccb, CAM_REQ_CMP);
            }
            MPTLOCK_2_CAMLOCK(mpt);
            break;
      }
      case XPT_GET_TRAN_SETTINGS:
      {
#ifdef      CAM_NEW_TRAN_CODE
            struct ccb_trans_settings_scsi *scsi;
            cts = &ccb->cts;
            cts->protocol = PROTO_SCSI;
            if (mpt->is_fc) {
                  struct ccb_trans_settings_fc *fc =
                      &cts->xport_specific.fc;
                  cts->protocol_version = SCSI_REV_SPC;
                  cts->transport = XPORT_FC;
                  cts->transport_version = 0;
                  fc->valid = CTS_FC_VALID_SPEED;
                  fc->bitrate = 100000;
            } else if (mpt->is_sas) {
                  struct ccb_trans_settings_sas *sas =
                      &cts->xport_specific.sas;
                  cts->protocol_version = SCSI_REV_SPC2;
                  cts->transport = XPORT_SAS;
                  cts->transport_version = 0;
                  sas->valid = CTS_SAS_VALID_SPEED;
                  sas->bitrate = 300000;
            } else {
                  cts->protocol_version = SCSI_REV_2;
                  cts->transport = XPORT_SPI;
                  cts->transport_version = 2;
                  if (mpt_get_spi_settings(mpt, cts) != 0) {
                        mpt_set_ccb_status(ccb, CAM_REQ_CMP_ERR);
                        break;
                  }
            }
            scsi = &cts->proto_specific.scsi;
            scsi->valid = CTS_SCSI_VALID_TQ;
            scsi->flags = CTS_SCSI_FLAGS_TAG_ENB;
#else
            cts = &ccb->cts;
            if (mpt->is_fc) {
                  cts->flags = CCB_TRANS_TAG_ENB | CCB_TRANS_DISC_ENB;
                  cts->valid = CCB_TRANS_DISC_VALID | CCB_TRANS_TQ_VALID;
                  cts->bus_width = MSG_EXT_WDTR_BUS_8_BIT;
            } else if (mpt->is_sas) {
                  cts->flags = CCB_TRANS_TAG_ENB | CCB_TRANS_DISC_ENB;
                  cts->valid = CCB_TRANS_DISC_VALID | CCB_TRANS_TQ_VALID;
                  cts->bus_width = MSG_EXT_WDTR_BUS_8_BIT;
            } else if (mpt_get_spi_settings(mpt, cts) != 0) {
                  mpt_set_ccb_status(ccb, CAM_REQ_CMP_ERR);
                  break;
            }
#endif
            mpt_set_ccb_status(ccb, CAM_REQ_CMP);
            break;
      }
      case XPT_CALC_GEOMETRY:
      {
            struct ccb_calc_geometry *ccg;

            ccg = &ccb->ccg;
            if (ccg->block_size == 0) {
                  ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
                  mpt_set_ccb_status(ccb, CAM_REQ_INVALID);
                  break;
            }
            mpt_calc_geometry(ccg, /*extended*/1);
            KASSERT(ccb->ccb_h.status, ("zero ccb sts at %d\n", __LINE__));
            break;
      }
      case XPT_PATH_INQ:            /* Path routing inquiry */
      {
            struct ccb_pathinq *cpi = &ccb->cpi;

            cpi->version_num = 1;
            cpi->target_sprt = 0;
            cpi->hba_eng_cnt = 0;
            cpi->max_target = mpt->port_facts[0].MaxDevices - 1;
            /*
             * FC cards report MAX_DEVICES of 512, but
             * the MSG_SCSI_IO_REQUEST target id field
             * is only 8 bits. Until we fix the driver
             * to support 'channels' for bus overflow,
             * just limit it.
             */
            if (cpi->max_target > 255) {
                  cpi->max_target = 255;
            }

            /*
             * VMware ESX reports > 16 devices and then dies when we probe.
             */
            if (mpt->is_spi && cpi->max_target > 15) {
                  cpi->max_target = 15;
            }
            cpi->max_lun = 7;
            cpi->initiator_id = mpt->mpt_ini_id;
            cpi->bus_id = cam_sim_bus(sim);

            /*
             * The base speed is the speed of the underlying connection.
             */
#ifdef      CAM_NEW_TRAN_CODE
            cpi->protocol = PROTO_SCSI;
            if (mpt->is_fc) {
                  cpi->hba_misc = PIM_NOBUSRESET;
                  cpi->base_transfer_speed = 100000;
                  cpi->hba_inquiry = PI_TAG_ABLE;
                  cpi->transport = XPORT_FC;
                  cpi->transport_version = 0;
                  cpi->protocol_version = SCSI_REV_SPC;
            } else if (mpt->is_sas) {
                  cpi->hba_misc = PIM_NOBUSRESET;
                  cpi->base_transfer_speed = 300000;
                  cpi->hba_inquiry = PI_TAG_ABLE;
                  cpi->transport = XPORT_SAS;
                  cpi->transport_version = 0;
                  cpi->protocol_version = SCSI_REV_SPC2;
            } else {
                  cpi->hba_misc = PIM_SEQSCAN;
                  cpi->base_transfer_speed = 3300;
                  cpi->hba_inquiry = PI_SDTR_ABLE|PI_TAG_ABLE|PI_WIDE_16;
                  cpi->transport = XPORT_SPI;
                  cpi->transport_version = 2;
                  cpi->protocol_version = SCSI_REV_2;
            }
#else
            if (mpt->is_fc) {
                  cpi->hba_misc = PIM_NOBUSRESET;
                  cpi->base_transfer_speed = 100000;
                  cpi->hba_inquiry = PI_TAG_ABLE;
            } else if (mpt->is_sas) {
                  cpi->hba_misc = PIM_NOBUSRESET;
                  cpi->base_transfer_speed = 300000;
                  cpi->hba_inquiry = PI_TAG_ABLE;
            } else {
                  cpi->hba_misc = PIM_SEQSCAN;
                  cpi->base_transfer_speed = 3300;
                  cpi->hba_inquiry = PI_SDTR_ABLE|PI_TAG_ABLE|PI_WIDE_16;
            }
#endif

            /*
             * We give our fake RAID passhtru bus a width that is MaxVolumes
             * wide and restrict it to one lun.
             */
            if (raid_passthru) {
                  cpi->max_target = mpt->ioc_page2->MaxPhysDisks - 1;
                  cpi->initiator_id = cpi->max_target + 1;
                  cpi->max_lun = 0;
            }

            if ((mpt->role & MPT_ROLE_INITIATOR) == 0) {
                  cpi->hba_misc |= PIM_NOINITIATOR;
            }
            if (mpt->is_fc && (mpt->role & MPT_ROLE_TARGET)) {
                  cpi->target_sprt =
                      PIT_PROCESSOR | PIT_DISCONNECT | PIT_TERM_IO;
            } else {
                  cpi->target_sprt = 0;
            }
            strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
            strncpy(cpi->hba_vid, "LSI", HBA_IDLEN);
            strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
            cpi->unit_number = cam_sim_unit(sim);
            cpi->ccb_h.status = CAM_REQ_CMP;
            break;
      }
      case XPT_EN_LUN:        /* Enable LUN as a target */
      {
            int result;

            CAMLOCK_2_MPTLOCK(mpt);
            if (ccb->cel.enable)
                  result = mpt_enable_lun(mpt,
                      ccb->ccb_h.target_id, ccb->ccb_h.target_lun);
            else
                  result = mpt_disable_lun(mpt,
                      ccb->ccb_h.target_id, ccb->ccb_h.target_lun);
            MPTLOCK_2_CAMLOCK(mpt);
            if (result == 0) {
                  mpt_set_ccb_status(ccb, CAM_REQ_CMP);
            } else {
                  mpt_set_ccb_status(ccb, CAM_REQ_CMP_ERR);
            }
            break;
      }
      case XPT_NOTIFY_ACK:          /* recycle notify ack */
      case XPT_IMMED_NOTIFY:        /* Add Immediate Notify Resource */
      case XPT_ACCEPT_TARGET_IO:    /* Add Accept Target IO Resource */
      {
            tgt_resource_t *trtp;
            lun_id_t lun = ccb->ccb_h.target_lun;
            ccb->ccb_h.sim_priv.entries[0].field = 0;
            ccb->ccb_h.sim_priv.entries[1].ptr = mpt;
            ccb->ccb_h.flags = 0;

            if (lun == CAM_LUN_WILDCARD) {
                  if (ccb->ccb_h.target_id != CAM_TARGET_WILDCARD) {
                        mpt_set_ccb_status(ccb, CAM_REQ_INVALID);
                        break;
                  }
                  trtp = &mpt->trt_wildcard;
            } else if (lun >= MPT_MAX_LUNS) {
                  mpt_set_ccb_status(ccb, CAM_REQ_INVALID);
                  break;
            } else {
                  trtp = &mpt->trt[lun];
            }
            CAMLOCK_2_MPTLOCK(mpt);
            if (ccb->ccb_h.func_code == XPT_ACCEPT_TARGET_IO) {
                  mpt_lprt(mpt, MPT_PRT_DEBUG1,
                      "Put FREE ATIO %p lun %d\n", ccb, lun);
                  STAILQ_INSERT_TAIL(&trtp->atios, &ccb->ccb_h,
                      sim_links.stqe);
            } else if (ccb->ccb_h.func_code == XPT_IMMED_NOTIFY) {
                  mpt_lprt(mpt, MPT_PRT_DEBUG1,
                      "Put FREE INOT lun %d\n", lun);
                  STAILQ_INSERT_TAIL(&trtp->inots, &ccb->ccb_h,
                      sim_links.stqe);
            } else {
                  mpt_lprt(mpt, MPT_PRT_ALWAYS, "Got Notify ACK\n");
            }
            mpt_set_ccb_status(ccb, CAM_REQ_INPROG);
            MPTLOCK_2_CAMLOCK(mpt);
            return;
      }
      case XPT_CONT_TARGET_IO:
            CAMLOCK_2_MPTLOCK(mpt);
            mpt_target_start_io(mpt, ccb);
            MPTLOCK_2_CAMLOCK(mpt);
            return;

      default:
            ccb->ccb_h.status = CAM_REQ_INVALID;
            break;
      }
      xpt_done(ccb);
}

static int
mpt_get_spi_settings(struct mpt_softc *mpt, struct ccb_trans_settings *cts)
{
#ifdef      CAM_NEW_TRAN_CODE
      struct ccb_trans_settings_scsi *scsi = &cts->proto_specific.scsi;
      struct ccb_trans_settings_spi *spi = &cts->xport_specific.spi;
#endif
      target_id_t tgt;
      uint32_t dval, pval, oval;
      int rv;

      if (IS_CURRENT_SETTINGS(cts) == 0) {
            tgt = cts->ccb_h.target_id;
      } else if (xpt_path_sim(cts->ccb_h.path) == mpt->phydisk_sim) {
            if (mpt_map_physdisk(mpt, (union ccb *)cts, &tgt)) {
                  return (-1);
            }
      } else {
            tgt = cts->ccb_h.target_id;
      }

      /*
       * We aren't looking at Port Page 2 BIOS settings here-
       * sometimes these have been known to be bogus XXX.
       *
       * For user settings, we pick the max from port page 0
       * 
       * For current settings we read the current settings out from
       * device page 0 for that target.
       */
      if (IS_CURRENT_SETTINGS(cts)) {
            CONFIG_PAGE_SCSI_DEVICE_0 tmp;
            dval = 0;

            CAMLOCK_2_MPTLOCK(mpt);
            tmp = mpt->mpt_dev_page0[tgt];
            rv = mpt_read_cur_cfg_page(mpt, tgt, &tmp.Header,
                sizeof(tmp), FALSE, 5000);
            if (rv) {
                  MPTLOCK_2_CAMLOCK(mpt);
                  mpt_prt(mpt, "can't get tgt %d config page 0\n", tgt);
                  return (rv);
            }
            MPTLOCK_2_CAMLOCK(mpt);
            mpt_lprt(mpt, MPT_PRT_DEBUG,
                "mpt_get_spi_settings[%d]: current NP %x Info %x\n", tgt,
                tmp.NegotiatedParameters, tmp.Information);
            dval |= (tmp.NegotiatedParameters & MPI_SCSIDEVPAGE0_NP_WIDE) ?
                DP_WIDE : DP_NARROW;
            dval |= (mpt->mpt_disc_enable & (1 << tgt)) ?
                DP_DISC_ENABLE : DP_DISC_DISABL;
            dval |= (mpt->mpt_tag_enable & (1 << tgt)) ?
                DP_TQING_ENABLE : DP_TQING_DISABL;
            oval = tmp.NegotiatedParameters;
            oval &= MPI_SCSIDEVPAGE0_NP_NEG_SYNC_OFFSET_MASK;
            oval >>= MPI_SCSIDEVPAGE0_NP_SHIFT_SYNC_OFFSET;
            pval = tmp.NegotiatedParameters;
            pval &= MPI_SCSIDEVPAGE0_NP_NEG_SYNC_PERIOD_MASK;
            pval >>= MPI_SCSIDEVPAGE0_NP_SHIFT_SYNC_PERIOD;
            mpt->mpt_dev_page0[tgt] = tmp;
      } else {
            dval = DP_WIDE|DP_DISC_ENABLE|DP_TQING_ENABLE|DP_SYNC;
            oval = mpt->mpt_port_page0.Capabilities;
            oval = MPI_SCSIPORTPAGE0_CAP_GET_MAX_SYNC_OFFSET(oval);
            pval = mpt->mpt_port_page0.Capabilities;
            pval = MPI_SCSIPORTPAGE0_CAP_GET_MIN_SYNC_PERIOD(pval);
      }

#ifndef     CAM_NEW_TRAN_CODE
      cts->flags &= ~(CCB_TRANS_DISC_ENB|CCB_TRANS_TAG_ENB);
      cts->valid = 0;
      cts->sync_period = pval;
      cts->sync_offset = oval;
      cts->valid |= CCB_TRANS_SYNC_RATE_VALID;
      cts->valid |= CCB_TRANS_SYNC_OFFSET_VALID;
      cts->valid |= CCB_TRANS_BUS_WIDTH_VALID;
      if (dval & DP_WIDE) {
            cts->bus_width = MSG_EXT_WDTR_BUS_16_BIT;
      } else {
            cts->bus_width = MSG_EXT_WDTR_BUS_8_BIT;
      }
      if (cts->ccb_h.target_lun != CAM_LUN_WILDCARD) {
            cts->valid |= CCB_TRANS_DISC_VALID | CCB_TRANS_TQ_VALID;
            if (dval & DP_DISC_ENABLE) {
                  cts->flags |= CCB_TRANS_DISC_ENB;
            }
            if (dval & DP_TQING_ENABLE) {
                  cts->flags |= CCB_TRANS_TAG_ENB;
            }
      }
#else
      spi->valid = 0;
      scsi->valid = 0;
      spi->flags = 0;
      scsi->flags = 0;
      spi->sync_offset = oval;
      spi->sync_period = pval;
      spi->valid |= CTS_SPI_VALID_SYNC_OFFSET;
      spi->valid |= CTS_SPI_VALID_SYNC_RATE;
      spi->valid |= CTS_SPI_VALID_BUS_WIDTH;
      if (dval & DP_WIDE) {
            spi->bus_width = MSG_EXT_WDTR_BUS_16_BIT;
      } else {
            spi->bus_width = MSG_EXT_WDTR_BUS_8_BIT;
      }
      if (cts->ccb_h.target_lun != CAM_LUN_WILDCARD) {
            scsi->valid = CTS_SCSI_VALID_TQ;
            if (dval & DP_TQING_ENABLE) {
                  scsi->flags |= CTS_SCSI_FLAGS_TAG_ENB;
            }
            spi->valid |= CTS_SPI_VALID_DISC;
            if (dval & DP_DISC_ENABLE) {
                  spi->flags |= CTS_SPI_FLAGS_DISC_ENB;
            }
      }
#endif
      mpt_lprt(mpt, MPT_PRT_NEGOTIATION,
          "mpt_get_spi_settings[%d]: %s flags 0x%x per 0x%x off=%d\n", tgt,
          IS_CURRENT_SETTINGS(cts)? "ACTIVE" : "NVRAM ", dval, pval, oval);
      return (0);
}

static void
mpt_setwidth(struct mpt_softc *mpt, int tgt, int onoff)
{
      PTR_CONFIG_PAGE_SCSI_DEVICE_1 ptr;

      ptr = &mpt->mpt_dev_page1[tgt];
      if (onoff) {
            ptr->RequestedParameters |= MPI_SCSIDEVPAGE1_RP_WIDE;
      } else {
            ptr->RequestedParameters &= ~MPI_SCSIDEVPAGE1_RP_WIDE;
      }
}

static void
mpt_setsync(struct mpt_softc *mpt, int tgt, int period, int offset)
{
      PTR_CONFIG_PAGE_SCSI_DEVICE_1 ptr;

      ptr = &mpt->mpt_dev_page1[tgt];
      ptr->RequestedParameters &= ~MPI_SCSIDEVPAGE1_RP_MIN_SYNC_PERIOD_MASK;
      ptr->RequestedParameters &= ~MPI_SCSIDEVPAGE1_RP_MAX_SYNC_OFFSET_MASK;
      ptr->RequestedParameters &= ~MPI_SCSIDEVPAGE1_RP_DT;
      ptr->RequestedParameters &= ~MPI_SCSIDEVPAGE1_RP_QAS;
      ptr->RequestedParameters &= ~MPI_SCSIDEVPAGE1_RP_IU;
      if (period == 0) {
            return;
      }
      ptr->RequestedParameters |=
          period << MPI_SCSIDEVPAGE1_RP_SHIFT_MIN_SYNC_PERIOD;
      ptr->RequestedParameters |=
          offset << MPI_SCSIDEVPAGE1_RP_SHIFT_MAX_SYNC_OFFSET;
      if (period < 0xa) {
            ptr->RequestedParameters |= MPI_SCSIDEVPAGE1_RP_DT;
      }
      if (period < 0x9) {
            ptr->RequestedParameters |= MPI_SCSIDEVPAGE1_RP_QAS;
            ptr->RequestedParameters |= MPI_SCSIDEVPAGE1_RP_IU;
      }
}

static int
mpt_update_spi_config(struct mpt_softc *mpt, int tgt)
{
      CONFIG_PAGE_SCSI_DEVICE_1 tmp;
      int rv;

      mpt_lprt(mpt, MPT_PRT_NEGOTIATION,
          "mpt_update_spi_config[%d].page1: Requested Params 0x%08x\n",
          tgt, mpt->mpt_dev_page1[tgt].RequestedParameters);
      tmp = mpt->mpt_dev_page1[tgt];
      rv = mpt_write_cur_cfg_page(mpt, tgt,
          &tmp.Header, sizeof(tmp), FALSE, 5000);
      if (rv) {
            mpt_prt(mpt, "mpt_update_spi_config: write cur page failed\n");
            return (-1);
      }
      return (0);
}

static void
mpt_calc_geometry(struct ccb_calc_geometry *ccg, int extended)
{
#if __FreeBSD_version >= 500000
      cam_calc_geometry(ccg, extended);
#else
      uint32_t size_mb;
      uint32_t secs_per_cylinder;

      if (ccg->block_size == 0) {
            ccg->ccb_h.status = CAM_REQ_INVALID;
            return;
      }
      size_mb = ccg->volume_size / ((1024L * 1024L) / ccg->block_size);
      if (size_mb > 1024 && extended) {
            ccg->heads = 255;
            ccg->secs_per_track = 63;
      } else {
            ccg->heads = 64;
            ccg->secs_per_track = 32;
      }
      secs_per_cylinder = ccg->heads * ccg->secs_per_track;
      ccg->cylinders = ccg->volume_size / secs_per_cylinder;
      ccg->ccb_h.status = CAM_REQ_CMP;
#endif
}

/****************************** Timeout Recovery ******************************/
static int
mpt_spawn_recovery_thread(struct mpt_softc *mpt)
{
      int error;

      error = mpt_kthread_create(mpt_recovery_thread, mpt,
          &mpt->recovery_thread, /*flags*/0,
          /*altstack*/0, "mpt_recovery%d", mpt->unit);
      return (error);
}

static void
mpt_terminate_recovery_thread(struct mpt_softc *mpt)
{
      if (mpt->recovery_thread == NULL) {
            return;
      }
      mpt->shutdwn_recovery = 1;
      wakeup(mpt);
      /*
       * Sleep on a slightly different location
       * for this interlock just for added safety.
       */
      mpt_sleep(mpt, &mpt->recovery_thread, PUSER, "thtrm", 0);
}

static void
mpt_recovery_thread(void *arg)
{
      struct mpt_softc *mpt;

      mpt = (struct mpt_softc *)arg;
      MPT_LOCK(mpt);
      for (;;) {
            if (TAILQ_EMPTY(&mpt->request_timeout_list) != 0) {
                  if (mpt->shutdwn_recovery == 0) {
                        mpt_sleep(mpt, mpt, PUSER, "idle", 0);
                  }
            }
            if (mpt->shutdwn_recovery != 0) {
                  break;
            }
            mpt_recover_commands(mpt);
      }
      mpt->recovery_thread = NULL;
      wakeup(&mpt->recovery_thread);
      MPT_UNLOCK(mpt);
      kthread_exit(0);
}

static int
mpt_scsi_send_tmf(struct mpt_softc *mpt, u_int type, u_int flags,
    u_int channel, u_int target, u_int lun, u_int abort_ctx, int sleep_ok)
{
      MSG_SCSI_TASK_MGMT *tmf_req;
      int             error;

      /*
       * Wait for any current TMF request to complete.
       * We're only allowed to issue one TMF at a time.
       */
      error = mpt_wait_req(mpt, mpt->tmf_req, REQ_STATE_FREE, REQ_STATE_FREE,
          sleep_ok, MPT_TMF_MAX_TIMEOUT);
      if (error != 0) {
            mpt_reset(mpt, TRUE);
            return (ETIMEDOUT);
      }

      mpt_assign_serno(mpt, mpt->tmf_req);
      mpt->tmf_req->state = REQ_STATE_ALLOCATED|REQ_STATE_QUEUED;

      tmf_req = (MSG_SCSI_TASK_MGMT *)mpt->tmf_req->req_vbuf;
      memset(tmf_req, 0, sizeof(*tmf_req));
      tmf_req->TargetID = target;
      tmf_req->Bus = channel;
      tmf_req->ChainOffset = 0;
      tmf_req->Function = MPI_FUNCTION_SCSI_TASK_MGMT;
      tmf_req->Reserved = 0;
      tmf_req->TaskType = type;
      tmf_req->Reserved1 = 0;
      tmf_req->MsgFlags = flags;
      tmf_req->MsgContext =
          htole32(mpt->tmf_req->index | scsi_tmf_handler_id);
      memset(&tmf_req->LUN, 0,
          sizeof(tmf_req->LUN) + sizeof(tmf_req->Reserved2));
      if (lun > 256) {
            tmf_req->LUN[0] = 0x40 | ((lun >> 8) & 0x3f);
            tmf_req->LUN[1] = lun & 0xff;
      } else {
            tmf_req->LUN[1] = lun;
      }
      tmf_req->TaskMsgContext = abort_ctx;

      mpt_lprt(mpt, MPT_PRT_DEBUG,
          "Issuing TMF %p:%u with MsgContext of 0x%x\n", mpt->tmf_req,
          mpt->tmf_req->serno, tmf_req->MsgContext);
      if (mpt->verbose > MPT_PRT_DEBUG) {
            mpt_print_request(tmf_req);
      }

      KASSERT(mpt_req_on_pending_list(mpt, mpt->tmf_req) == 0,
          ("mpt_scsi_send_tmf: tmf_req already on pending list"));
      TAILQ_INSERT_HEAD(&mpt->request_pending_list, mpt->tmf_req, links);
      error = mpt_send_handshake_cmd(mpt, sizeof(*tmf_req), tmf_req);
      if (error != MPT_OK) {
            TAILQ_REMOVE(&mpt->request_pending_list, mpt->tmf_req, links);
            mpt->tmf_req->state = REQ_STATE_FREE;
            mpt_reset(mpt, TRUE);
      }
      return (error);
}

/*
 * When a command times out, it is placed on the requeust_timeout_list
 * and we wake our recovery thread.  The MPT-Fusion architecture supports
 * only a single TMF operation at a time, so we serially abort/bdr, etc,
 * the timedout transactions.  The next TMF is issued either by the
 * completion handler of the current TMF waking our recovery thread,
 * or the TMF timeout handler causing a hard reset sequence.
 */
static void
mpt_recover_commands(struct mpt_softc *mpt)
{
      request_t      *req;
      union ccb      *ccb;
      int             error;

      if (TAILQ_EMPTY(&mpt->request_timeout_list) != 0) {
            /*
             * No work to do- leave.
             */
            mpt_prt(mpt, "mpt_recover_commands: no requests.\n");
            return;
      }

      /*
       * Flush any commands whose completion coincides with their timeout.
       */
      mpt_intr(mpt);

      if (TAILQ_EMPTY(&mpt->request_timeout_list) != 0) {
            /*
             * The timedout commands have already
             * completed.  This typically means
             * that either the timeout value was on
             * the hairy edge of what the device
             * requires or - more likely - interrupts
             * are not happening.
             */
            mpt_prt(mpt, "Timedout requests already complete. "
                "Interrupts may not be functioning.\n");
            mpt_enable_ints(mpt);
            return;
      }

      /*
       * We have no visibility into the current state of the
       * controller, so attempt to abort the commands in the
       * order they timed-out. For initiator commands, we
       * depend on the reply handler pulling requests off
       * the timeout list.
       */
      while ((req = TAILQ_FIRST(&mpt->request_timeout_list)) != NULL) {
            uint16_t status;
            uint8_t response;
            MSG_REQUEST_HEADER *hdrp = req->req_vbuf;

            mpt_prt(mpt, "attempting to abort req %p:%u function %x\n",
                req, req->serno, hdrp->Function);
            ccb = req->ccb;
            if (ccb == NULL) {
                  mpt_prt(mpt, "null ccb in timed out request. "
                      "Resetting Controller.\n");
                  mpt_reset(mpt, TRUE);
                  continue;
            }
            mpt_set_ccb_status(ccb, CAM_CMD_TIMEOUT);

            /*
             * Check to see if this is not an initiator command and
             * deal with it differently if it is.
             */
            switch (hdrp->Function) {
            case MPI_FUNCTION_SCSI_IO_REQUEST:
            case MPI_FUNCTION_RAID_SCSI_IO_PASSTHROUGH:
                  break;
            default:
                  /*
                   * XXX: FIX ME: need to abort target assists...
                   */
                  mpt_prt(mpt, "just putting it back on the pend q\n");
                  TAILQ_REMOVE(&mpt->request_timeout_list, req, links);
                  TAILQ_INSERT_HEAD(&mpt->request_pending_list, req,
                      links);
                  continue;
            }

            error = mpt_scsi_send_tmf(mpt,
                MPI_SCSITASKMGMT_TASKTYPE_ABORT_TASK,
                0, 0, ccb->ccb_h.target_id, ccb->ccb_h.target_lun,
                htole32(req->index | scsi_io_handler_id), TRUE);

            if (error != 0) {
                  /*
                   * mpt_scsi_send_tmf hard resets on failure, so no
                   * need to do so here.  Our queue should be emptied
                   * by the hard reset.
                   */
                  continue;
            }

            error = mpt_wait_req(mpt, mpt->tmf_req, REQ_STATE_DONE,
                REQ_STATE_DONE, TRUE, 500);

            status = mpt->tmf_req->IOCStatus;
            response = mpt->tmf_req->ResponseCode;
            mpt->tmf_req->state = REQ_STATE_FREE;

            if (error != 0) {
                  /*
                   * If we've errored out,, reset the controller.
                   */
                  mpt_prt(mpt, "mpt_recover_commands: abort timed-out. "
                      "Resetting controller\n");
                  mpt_reset(mpt, TRUE);
                  continue;
            }

            if ((status & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) {
                  mpt_prt(mpt, "mpt_recover_commands: IOC Status 0x%x. "
                      "Resetting controller.\n", status);
                  mpt_reset(mpt, TRUE);
                  continue;
            }

            if (response != MPI_SCSITASKMGMT_RSP_TM_SUCCEEDED &&
                response != MPI_SCSITASKMGMT_RSP_TM_COMPLETE) {
                  mpt_prt(mpt, "mpt_recover_commands: TMF Response 0x%x. "
                      "Resetting controller.\n", response);
                  mpt_reset(mpt, TRUE);
                  continue;
            }
            mpt_prt(mpt, "abort of req %p:%u completed\n", req, req->serno);
      }
}

/************************ Target Mode Support ****************************/
static void
mpt_fc_post_els(struct mpt_softc *mpt, request_t *req, int ioindex)
{
      MSG_LINK_SERVICE_BUFFER_POST_REQUEST *fc;
      PTR_SGE_TRANSACTION32 tep;
      PTR_SGE_SIMPLE32 se;
      bus_addr_t paddr;
      uint32_t fl;

      paddr = req->req_pbuf;
      paddr += MPT_RQSL(mpt);

      fc = req->req_vbuf;
      memset(fc, 0, MPT_REQUEST_AREA);
      fc->BufferCount = 1;
      fc->Function = MPI_FUNCTION_FC_LINK_SRVC_BUF_POST;
      fc->MsgContext = htole32(req->index | fc_els_handler_id);

      /*
       * Okay, set up ELS buffer pointers. ELS buffer pointers
       * consist of a TE SGL element (with details length of zero)
       * followe by a SIMPLE SGL element which holds the address
       * of the buffer.
       */

      tep = (PTR_SGE_TRANSACTION32) &fc->SGL;

      tep->ContextSize = 4;
      tep->Flags = 0;
      tep->TransactionContext[0] = htole32(ioindex);

      se = (PTR_SGE_SIMPLE32) &tep->TransactionDetails[0];
      fl =
            MPI_SGE_FLAGS_HOST_TO_IOC     |
            MPI_SGE_FLAGS_SIMPLE_ELEMENT  |
            MPI_SGE_FLAGS_LAST_ELEMENT    |
            MPI_SGE_FLAGS_END_OF_LIST     |
            MPI_SGE_FLAGS_END_OF_BUFFER;
      fl <<= MPI_SGE_FLAGS_SHIFT;
      fl |= (MPT_NRFM(mpt) - MPT_RQSL(mpt));
      se->FlagsLength = htole32(fl);
      se->Address = htole32((uint32_t) paddr);
      mpt_lprt(mpt, MPT_PRT_DEBUG,
          "add ELS index %d ioindex %d for %p:%u\n",
          req->index, ioindex, req, req->serno);
      KASSERT(((req->state & REQ_STATE_LOCKED) != 0),
          ("mpt_fc_post_els: request not locked"));
      mpt_send_cmd(mpt, req);
}

static void
mpt_post_target_command(struct mpt_softc *mpt, request_t *req, int ioindex)
{
      PTR_MSG_TARGET_CMD_BUFFER_POST_REQUEST fc;
      PTR_CMD_BUFFER_DESCRIPTOR cb;
      bus_addr_t paddr;

      paddr = req->req_pbuf;
      paddr += MPT_RQSL(mpt);
      memset(req->req_vbuf, 0, MPT_REQUEST_AREA);
      MPT_TGT_STATE(mpt, req)->state = TGT_STATE_LOADING;

      fc = req->req_vbuf;
      fc->BufferCount = 1;
      fc->Function = MPI_FUNCTION_TARGET_CMD_BUFFER_POST;
      fc->MsgContext = htole32(req->index | mpt->scsi_tgt_handler_id);

      cb = &fc->Buffer[0];
      cb->IoIndex = htole16(ioindex);
      cb->u.PhysicalAddress32 = htole32((U32) paddr);

      mpt_check_doorbell(mpt);
      mpt_send_cmd(mpt, req);
}

static int
mpt_add_els_buffers(struct mpt_softc *mpt)
{
      int i;

      if (mpt->is_fc == 0) {
            return (TRUE);
      }

      if (mpt->els_cmds_allocated) {
            return (TRUE);
      }

      mpt->els_cmd_ptrs = malloc(MPT_MAX_ELS * sizeof (request_t *),
          M_DEVBUF, M_NOWAIT | M_ZERO);

      if (mpt->els_cmd_ptrs == NULL) {
            return (FALSE);
      }

      /*
       * Feed the chip some ELS buffer resources
       */
      for (i = 0; i < MPT_MAX_ELS; i++) {
            request_t *req = mpt_get_request(mpt, FALSE);
            if (req == NULL) {
                  break;
            }
            req->state |= REQ_STATE_LOCKED;
            mpt->els_cmd_ptrs[i] = req;
            mpt_fc_post_els(mpt, req, i);
      }

      if (i == 0) {
            mpt_prt(mpt, "unable to add ELS buffer resources\n");
            free(mpt->els_cmd_ptrs, M_DEVBUF);
            mpt->els_cmd_ptrs = NULL;
            return (FALSE);
      }
      if (i != MPT_MAX_ELS) {
            mpt_lprt(mpt, MPT_PRT_INFO,
                "only added %d of %d  ELS buffers\n", i, MPT_MAX_ELS);
      }
      mpt->els_cmds_allocated = i;
      return(TRUE);
}

static int
mpt_add_target_commands(struct mpt_softc *mpt)
{
      int i, max;

      if (mpt->tgt_cmd_ptrs) {
            return (TRUE);
      }

      max = MPT_MAX_REQUESTS(mpt) >> 1;
      if (max > mpt->mpt_max_tgtcmds) {
            max = mpt->mpt_max_tgtcmds;
      }
      mpt->tgt_cmd_ptrs =
          malloc(max * sizeof (request_t *), M_DEVBUF, M_NOWAIT | M_ZERO);
      if (mpt->tgt_cmd_ptrs == NULL) {
            mpt_prt(mpt,
                "mpt_add_target_commands: could not allocate cmd ptrs\n");
            return (FALSE);
      }

      for (i = 0; i < max; i++) {
            request_t *req;

            req = mpt_get_request(mpt, FALSE);
            if (req == NULL) {
                  break;
            }
            req->state |= REQ_STATE_LOCKED;
            mpt->tgt_cmd_ptrs[i] = req;
            mpt_post_target_command(mpt, req, i);
      }


      if (i == 0) {
            mpt_lprt(mpt, MPT_PRT_ERROR, "could not add any target bufs\n");
            free(mpt->tgt_cmd_ptrs, M_DEVBUF);
            mpt->tgt_cmd_ptrs = NULL;
            return (FALSE);
      }

      mpt->tgt_cmds_allocated = i;

      if (i < max) {
            mpt_lprt(mpt, MPT_PRT_INFO,
                "added %d of %d target bufs\n", i, max);
      }
      return (i);
}

static int
mpt_enable_lun(struct mpt_softc *mpt, target_id_t tgt, lun_id_t lun)
{
      if (tgt == CAM_TARGET_WILDCARD && lun == CAM_LUN_WILDCARD) {
            mpt->twildcard = 1;
      } else if (lun >= MPT_MAX_LUNS) {
            return (EINVAL);
      } else if (tgt != CAM_TARGET_WILDCARD && tgt != 0) {
            return (EINVAL);
      }
      if (mpt->tenabled == 0) {
            if (mpt->is_fc) {
                  (void) mpt_fc_reset_link(mpt, 0);
            }
            mpt->tenabled = 1;
      }
      if (lun == CAM_LUN_WILDCARD) {
            mpt->trt_wildcard.enabled = 1;
      } else {
            mpt->trt[lun].enabled = 1;
      }
      return (0);
}

static int
mpt_disable_lun(struct mpt_softc *mpt, target_id_t tgt, lun_id_t lun)
{
      int i;
      if (tgt == CAM_TARGET_WILDCARD && lun == CAM_LUN_WILDCARD) {
            mpt->twildcard = 0;
      } else if (lun >= MPT_MAX_LUNS) {
            return (EINVAL);
      } else if (tgt != CAM_TARGET_WILDCARD && tgt != 0) {
            return (EINVAL);
      }
      if (lun == CAM_LUN_WILDCARD) {
            mpt->trt_wildcard.enabled = 0;
      } else {
            mpt->trt[lun].enabled = 0;
      }
      for (i = 0; i < MPT_MAX_LUNS; i++) {
            if (mpt->trt[lun].enabled) {
                  break;
            }
      }
      if (i == MPT_MAX_LUNS && mpt->twildcard == 0) {
            if (mpt->is_fc) {
                  (void) mpt_fc_reset_link(mpt, 0);
            }
            mpt->tenabled = 0;
      }
      return (0);
}

/*
 * Called with MPT lock held
 */
static void
mpt_target_start_io(struct mpt_softc *mpt, union ccb *ccb)
{
      struct ccb_scsiio *csio = &ccb->csio;
      request_t *cmd_req = MPT_TAG_2_REQ(mpt, csio->tag_id);
      mpt_tgt_state_t *tgt = MPT_TGT_STATE(mpt, cmd_req);

      switch (tgt->state) {
      case TGT_STATE_IN_CAM:
            break;
      case TGT_STATE_MOVING_DATA:
            mpt_set_ccb_status(ccb, CAM_REQUEUE_REQ);
            xpt_freeze_simq(mpt->sim, 1);
            ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
            tgt->ccb->ccb_h.status |= CAM_RELEASE_SIMQ;
            MPTLOCK_2_CAMLOCK(mpt);
            xpt_done(ccb);
            CAMLOCK_2_MPTLOCK(mpt);
            return;
      default:
            mpt_prt(mpt, "ccb %p flags 0x%x tag 0x%08x had bad request "
                "starting I/O\n", ccb, csio->ccb_h.flags, csio->tag_id);
            mpt_tgt_dump_req_state(mpt, cmd_req);
            mpt_set_ccb_status(ccb, CAM_REQ_CMP_ERR);
            MPTLOCK_2_CAMLOCK(mpt);
            xpt_done(ccb);
            CAMLOCK_2_MPTLOCK(mpt);
            return;
      }

      if (csio->dxfer_len) {
            bus_dmamap_callback_t *cb;
            PTR_MSG_TARGET_ASSIST_REQUEST ta;
            request_t *req;

            KASSERT((ccb->ccb_h.flags & CAM_DIR_MASK) != CAM_DIR_NONE,
                ("dxfer_len %u but direction is NONE\n", csio->dxfer_len));

            if ((req = mpt_get_request(mpt, FALSE)) == NULL) {
                  if (mpt->outofbeer == 0) {
                        mpt->outofbeer = 1;
                        xpt_freeze_simq(mpt->sim, 1);
                        mpt_lprt(mpt, MPT_PRT_DEBUG, "FREEZEQ\n");
                  }
                  ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
                  mpt_set_ccb_status(ccb, CAM_REQUEUE_REQ);
                  MPTLOCK_2_CAMLOCK(mpt);
                  xpt_done(ccb);
                  CAMLOCK_2_MPTLOCK(mpt);
                  return;
            }
            ccb->ccb_h.status = CAM_SIM_QUEUED | CAM_REQ_INPROG;
            if (sizeof (bus_addr_t) > 4) {
                  cb = mpt_execute_req_a64;
            } else {
                  cb = mpt_execute_req;
            }

            req->ccb = ccb;
            ccb->ccb_h.ccb_req_ptr = req;

            /*
             * Record the currently active ccb and the
             * request for it in our target state area.
             */
            tgt->ccb = ccb;
            tgt->req = req;

            memset(req->req_vbuf, 0, MPT_RQSL(mpt));
            ta = req->req_vbuf;

            if (mpt->is_sas) {
                  PTR_MPI_TARGET_SSP_CMD_BUFFER ssp =
                       cmd_req->req_vbuf;
                  ta->QueueTag = ssp->InitiatorTag;
            } else if (mpt->is_spi) {
                  PTR_MPI_TARGET_SCSI_SPI_CMD_BUFFER sp =
                       cmd_req->req_vbuf;
                  ta->QueueTag = sp->Tag;
            }
            ta->Function = MPI_FUNCTION_TARGET_ASSIST;
            ta->MsgContext = htole32(req->index | mpt->scsi_tgt_handler_id);
            ta->ReplyWord = htole32(tgt->reply_desc);
            if (csio->ccb_h.target_lun > 256) {
                  ta->LUN[0] =
                      0x40 | ((csio->ccb_h.target_lun >> 8) & 0x3f);
                  ta->LUN[1] = csio->ccb_h.target_lun & 0xff;
            } else {
                  ta->LUN[1] = csio->ccb_h.target_lun;
            }

            ta->RelativeOffset = tgt->bytes_xfered;
            ta->DataLength = ccb->csio.dxfer_len;
            if (ta->DataLength > tgt->resid) {
                  ta->DataLength = tgt->resid;
            }

            /*
             * XXX Should be done after data transfer completes?
             */
            tgt->resid -= csio->dxfer_len;
            tgt->bytes_xfered += csio->dxfer_len;

            if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) {
                  ta->TargetAssistFlags |=
                      TARGET_ASSIST_FLAGS_DATA_DIRECTION;
            }

#ifdef      WE_TRUST_AUTO_GOOD_STATUS
            if ((ccb->ccb_h.flags & CAM_SEND_STATUS) &&
                csio->scsi_status == SCSI_STATUS_OK && tgt->resid == 0) {
                  ta->TargetAssistFlags |=
                      TARGET_ASSIST_FLAGS_AUTO_STATUS;
            }
#endif
            tgt->state = TGT_STATE_SETTING_UP_FOR_DATA;

            mpt_lprt(mpt, MPT_PRT_DEBUG, 
                "DATA_CCB %p tag %x %u bytes %u resid flg %x req %p:%u "
                "nxtstate=%d\n", csio, csio->tag_id, csio->dxfer_len,
                tgt->resid, ccb->ccb_h.flags, req, req->serno, tgt->state);

            MPTLOCK_2_CAMLOCK(mpt);
            if ((ccb->ccb_h.flags & CAM_SCATTER_VALID) == 0) {
                  if ((ccb->ccb_h.flags & CAM_DATA_PHYS) == 0) {
                        int error;
                        int s = splsoftvm();
                        error = bus_dmamap_load(mpt->buffer_dmat,
                            req->dmap, csio->data_ptr, csio->dxfer_len,
                            cb, req, 0);
                        splx(s);
                        if (error == EINPROGRESS) {
                              xpt_freeze_simq(mpt->sim, 1);
                              ccb->ccb_h.status |= CAM_RELEASE_SIMQ;
                        }
                  } else {
                        /*
                         * We have been given a pointer to single
                         * physical buffer.
                         */
                        struct bus_dma_segment seg;
                        seg.ds_addr = (bus_addr_t)
                            (vm_offset_t)csio->data_ptr;
                        seg.ds_len = csio->dxfer_len;
                        (*cb)(req, &seg, 1, 0);
                  }
            } else {
                  /*
                   * We have been given a list of addresses.
                   * This case could be easily supported but they are not
                   * currently generated by the CAM subsystem so there
                   * is no point in wasting the time right now.
                   */
                  struct bus_dma_segment *sgs;
                  if ((ccb->ccb_h.flags & CAM_SG_LIST_PHYS) == 0) {
                        (*cb)(req, NULL, 0, EFAULT);
                  } else {
                        /* Just use the segments provided */
                        sgs = (struct bus_dma_segment *)csio->data_ptr;
                        (*cb)(req, sgs, csio->sglist_cnt, 0);
                  }
            }
            CAMLOCK_2_MPTLOCK(mpt);
      } else {
            uint8_t *sp = NULL, sense[MPT_SENSE_SIZE];

            /*
             * XXX: I don't know why this seems to happen, but
             * XXX: completing the CCB seems to make things happy.
             * XXX: This seems to happen if the initiator requests
             * XXX: enough data that we have to do multiple CTIOs.
             */
            if ((ccb->ccb_h.flags & CAM_SEND_STATUS) == 0) {
                  mpt_lprt(mpt, MPT_PRT_DEBUG,
                      "Meaningless STATUS CCB (%p): flags %x status %x "
                      "resid %d bytes_xfered %u\n", ccb, ccb->ccb_h.flags,
                      ccb->ccb_h.status, tgt->resid, tgt->bytes_xfered);
                  mpt_set_ccb_status(ccb, CAM_REQ_CMP);
                  ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
                  MPTLOCK_2_CAMLOCK(mpt);
                  xpt_done(ccb);
                  CAMLOCK_2_MPTLOCK(mpt);
                  return;
            }
            if (ccb->ccb_h.flags & CAM_SEND_SENSE) {
                  sp = sense;
                  memcpy(sp, &csio->sense_data,
                     min(csio->sense_len, MPT_SENSE_SIZE));
            }
            mpt_scsi_tgt_status(mpt, ccb, cmd_req, csio->scsi_status, sp);
      }
}

static void
mpt_scsi_tgt_local(struct mpt_softc *mpt, request_t *cmd_req,
    uint32_t lun, int send, uint8_t *data, size_t length)
{
      mpt_tgt_state_t *tgt;
      PTR_MSG_TARGET_ASSIST_REQUEST ta;
      SGE_SIMPLE32 *se;
      uint32_t flags;
      uint8_t *dptr;
      bus_addr_t pptr;
      request_t *req;

      /*
       * We enter with resid set to the data load for the command.
       */
      tgt = MPT_TGT_STATE(mpt, cmd_req);
      if (length == 0 || tgt->resid == 0) {
            tgt->resid = 0;
            mpt_scsi_tgt_status(mpt, NULL, cmd_req, 0, NULL);
            return;
      }

      if ((req = mpt_get_request(mpt, FALSE)) == NULL) {
            mpt_prt(mpt, "out of resources- dropping local response\n");
            return;
      }
      tgt->is_local = 1;


      memset(req->req_vbuf, 0, MPT_RQSL(mpt));
      ta = req->req_vbuf;

      if (mpt->is_sas) {
            PTR_MPI_TARGET_SSP_CMD_BUFFER ssp = cmd_req->req_vbuf;
            ta->QueueTag = ssp->InitiatorTag;
      } else if (mpt->is_spi) {
            PTR_MPI_TARGET_SCSI_SPI_CMD_BUFFER sp = cmd_req->req_vbuf;
            ta->QueueTag = sp->Tag;
      }
      ta->Function = MPI_FUNCTION_TARGET_ASSIST;
      ta->MsgContext = htole32(req->index | mpt->scsi_tgt_handler_id);
      ta->ReplyWord = htole32(tgt->reply_desc);
      if (lun > 256) {
            ta->LUN[0] = 0x40 | ((lun >> 8) & 0x3f);
            ta->LUN[1] = lun & 0xff;
      } else {
            ta->LUN[1] = lun;
      }
      ta->RelativeOffset = 0;
      ta->DataLength = length;

      dptr = req->req_vbuf;
      dptr += MPT_RQSL(mpt);
      pptr = req->req_pbuf;
      pptr += MPT_RQSL(mpt);
      memcpy(dptr, data, min(length, MPT_RQSL(mpt)));

      se = (SGE_SIMPLE32 *) &ta->SGL[0];
      memset(se, 0,sizeof (*se));

      flags = MPI_SGE_FLAGS_SIMPLE_ELEMENT;
      if (send) {
            ta->TargetAssistFlags |= TARGET_ASSIST_FLAGS_DATA_DIRECTION;
            flags |= MPI_SGE_FLAGS_HOST_TO_IOC;
      }
      se->Address = pptr;
      MPI_pSGE_SET_LENGTH(se, length);
      flags |= MPI_SGE_FLAGS_LAST_ELEMENT;
      flags |= MPI_SGE_FLAGS_END_OF_LIST | MPI_SGE_FLAGS_END_OF_BUFFER;
      MPI_pSGE_SET_FLAGS(se, flags);

      tgt->ccb = NULL;
      tgt->req = req;
      tgt->resid -= length;
      tgt->bytes_xfered = length;
#ifdef      WE_TRUST_AUTO_GOOD_STATUS
      tgt->state = TGT_STATE_MOVING_DATA_AND_STATUS;
#else
      tgt->state = TGT_STATE_MOVING_DATA;
#endif
      mpt_send_cmd(mpt, req);
}

/*
 * Abort queued up CCBs
 */
static cam_status
mpt_abort_target_ccb(struct mpt_softc *mpt, union ccb *ccb)
{
      struct mpt_hdr_stailq *lp;
      struct ccb_hdr *srch;
      int found = 0;
      union ccb *accb = ccb->cab.abort_ccb;
      tgt_resource_t *trtp;

      mpt_lprt(mpt, MPT_PRT_DEBUG, "aborting ccb %p\n", accb);

      if (ccb->ccb_h.target_lun == CAM_LUN_WILDCARD) {
            trtp = &mpt->trt_wildcard;
      } else {
            trtp = &mpt->trt[ccb->ccb_h.target_lun];
      }

      if (accb->ccb_h.func_code == XPT_ACCEPT_TARGET_IO) {
            lp = &trtp->atios;
      } else if (accb->ccb_h.func_code == XPT_IMMED_NOTIFY) {
            lp = &trtp->inots;
      } else {
            return (CAM_REQ_INVALID);
      }

      STAILQ_FOREACH(srch, lp, sim_links.stqe) {
            if (srch == &accb->ccb_h) {
                  found = 1;
                  STAILQ_REMOVE(lp, srch, ccb_hdr, sim_links.stqe);
                  break;
            }
      }
      if (found) {
            accb->ccb_h.status = CAM_REQ_ABORTED;
            xpt_done(accb);
            return (CAM_REQ_CMP);
      }
      mpt_prt(mpt, "mpt_abort_tgt_ccb: CCB %p not found\n", ccb);
      return (CAM_PATH_INVALID);
}

/*
 * Ask the MPT to abort the current target command
 */ 
static int
mpt_abort_target_cmd(struct mpt_softc *mpt, request_t *cmd_req)
{
      int error;
      request_t *req;
      PTR_MSG_TARGET_MODE_ABORT abtp;

      req = mpt_get_request(mpt, FALSE);
      if (req == NULL) {
            return (-1);
      }
      abtp = req->req_vbuf;
      memset(abtp, 0, sizeof (*abtp));

      abtp->MsgContext = htole32(req->index | mpt->scsi_tgt_handler_id);
      abtp->AbortType = TARGET_MODE_ABORT_TYPE_EXACT_IO;
      abtp->Function = MPI_FUNCTION_TARGET_MODE_ABORT;
      abtp->ReplyWord = htole32(MPT_TGT_STATE(mpt, cmd_req)->reply_desc);
      error = 0;
      if (mpt->is_fc || mpt->is_sas) {
            mpt_send_cmd(mpt, req);
      } else {
            error = mpt_send_handshake_cmd(mpt, sizeof(*req), req);
      }
      return (error);
}

/*
 * WE_TRUST_AUTO_GOOD_STATUS- I've found that setting 
 * TARGET_STATUS_SEND_FLAGS_AUTO_GOOD_STATUS leads the
 * FC929 to set bogus FC_RSP fields (nonzero residuals
 * but w/o RESID fields set). This causes QLogic initiators
 * to think maybe that a frame was lost.
 *
 * WE_CAN_USE_AUTO_REPOST- we can't use AUTO_REPOST because
 * we use allocated requests to do TARGET_ASSIST and we
 * need to know when to release them.
 */

static void
mpt_scsi_tgt_status(struct mpt_softc *mpt, union ccb *ccb, request_t *cmd_req,
    uint8_t status, uint8_t const *sense_data)
{
      uint8_t *cmd_vbuf;
      mpt_tgt_state_t *tgt;
      PTR_MSG_TARGET_STATUS_SEND_REQUEST tp;
      request_t *req;
      bus_addr_t paddr;
      int resplen = 0;
      uint32_t fl;

      cmd_vbuf = cmd_req->req_vbuf;
      cmd_vbuf += MPT_RQSL(mpt);
      tgt = MPT_TGT_STATE(mpt, cmd_req);

      if ((req = mpt_get_request(mpt, FALSE)) == NULL) {
            if (mpt->outofbeer == 0) {
                  mpt->outofbeer = 1;
                  xpt_freeze_simq(mpt->sim, 1);
                  mpt_lprt(mpt, MPT_PRT_DEBUG, "FREEZEQ\n");
            }
            if (ccb) {
                  ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
                  mpt_set_ccb_status(ccb, CAM_REQUEUE_REQ);
                  MPTLOCK_2_CAMLOCK(mpt);
                  xpt_done(ccb);
                  CAMLOCK_2_MPTLOCK(mpt);
            } else {
                  mpt_prt(mpt,
                      "could not allocate status request- dropping\n");
            }
            return;
      }
      req->ccb = ccb;
      if (ccb) {
            ccb->ccb_h.ccb_mpt_ptr = mpt;
            ccb->ccb_h.ccb_req_ptr = req;
      }

      /*
       * Record the currently active ccb, if any, and the
       * request for it in our target state area.
       */
      tgt->ccb = ccb;
      tgt->req = req;
      tgt->state = TGT_STATE_SENDING_STATUS;

      tp = req->req_vbuf;
      paddr = req->req_pbuf;
      paddr += MPT_RQSL(mpt);

      memset(tp, 0, sizeof (*tp));
      tp->Function = MPI_FUNCTION_TARGET_STATUS_SEND;
      if (mpt->is_fc) {
            PTR_MPI_TARGET_FCP_CMD_BUFFER fc =
                (PTR_MPI_TARGET_FCP_CMD_BUFFER) cmd_vbuf;
            uint8_t *sts_vbuf;
            uint32_t *rsp;

            sts_vbuf = req->req_vbuf;
            sts_vbuf += MPT_RQSL(mpt);
            rsp = (uint32_t *) sts_vbuf;
            memcpy(tp->LUN, fc->FcpLun, sizeof (tp->LUN));

            /*
             * The MPI_TARGET_FCP_RSP_BUFFER define is unfortunate.
             * It has to be big-endian in memory and is organized
             * in 32 bit words, which are much easier to deal with
             * as words which are swizzled as needed.
             *
             * All we're filling here is the FC_RSP payload.
             * We may just have the chip synthesize it if
             * we have no residual and an OK status.
             *
             */
            memset(rsp, 0, sizeof (MPI_TARGET_FCP_RSP_BUFFER));

            rsp[2] = status;
            if (tgt->resid) {
                  rsp[2] |= 0x800;  /* XXXX NEED MNEMONIC!!!! */
                  rsp[3] = htobe32(tgt->resid);
#ifdef      WE_TRUST_AUTO_GOOD_STATUS
                  resplen = sizeof (MPI_TARGET_FCP_RSP_BUFFER);
#endif
            }
            if (status == SCSI_STATUS_CHECK_COND) {
                  int i;

                  rsp[2] |= 0x200;  /* XXXX NEED MNEMONIC!!!! */
                  rsp[4] = htobe32(MPT_SENSE_SIZE);
                  if (sense_data) {
                        memcpy(&rsp[8], sense_data, MPT_SENSE_SIZE);
                  } else {
                        mpt_prt(mpt, "mpt_scsi_tgt_status: CHECK CONDI"
                            "TION but no sense data?\n");
                        memset(&rsp, 0, MPT_SENSE_SIZE);
                  }
                  for (i = 8; i < (8 + (MPT_SENSE_SIZE >> 2)); i++) {
                        rsp[i] = htobe32(rsp[i]);
                  }
#ifdef      WE_TRUST_AUTO_GOOD_STATUS
                  resplen = sizeof (MPI_TARGET_FCP_RSP_BUFFER);
#endif
            }
#ifndef     WE_TRUST_AUTO_GOOD_STATUS
            resplen = sizeof (MPI_TARGET_FCP_RSP_BUFFER);
#endif
            rsp[2] = htobe32(rsp[2]);
      } else if (mpt->is_sas) {
            PTR_MPI_TARGET_SSP_CMD_BUFFER ssp =
                (PTR_MPI_TARGET_SSP_CMD_BUFFER) cmd_vbuf;
            memcpy(tp->LUN, ssp->LogicalUnitNumber, sizeof (tp->LUN));
      } else {
            PTR_MPI_TARGET_SCSI_SPI_CMD_BUFFER sp =
                (PTR_MPI_TARGET_SCSI_SPI_CMD_BUFFER) cmd_vbuf;
            tp->StatusCode = status;
            tp->QueueTag = htole16(sp->Tag);
            memcpy(tp->LUN, sp->LogicalUnitNumber, sizeof (tp->LUN));
      }

      tp->ReplyWord = htole32(tgt->reply_desc);
      tp->MsgContext = htole32(req->index | mpt->scsi_tgt_handler_id);

#ifdef      WE_CAN_USE_AUTO_REPOST
      tp->MsgFlags = TARGET_STATUS_SEND_FLAGS_REPOST_CMD_BUFFER;
#endif
      if (status == SCSI_STATUS_OK && resplen == 0) {
            tp->MsgFlags |= TARGET_STATUS_SEND_FLAGS_AUTO_GOOD_STATUS;
      } else {
            tp->StatusDataSGE.u.Address32 = htole32((uint32_t) paddr);
            fl =
                  MPI_SGE_FLAGS_HOST_TO_IOC     |
                  MPI_SGE_FLAGS_SIMPLE_ELEMENT  |
                  MPI_SGE_FLAGS_LAST_ELEMENT    |
                  MPI_SGE_FLAGS_END_OF_LIST     |
                  MPI_SGE_FLAGS_END_OF_BUFFER;
            fl <<= MPI_SGE_FLAGS_SHIFT;
            fl |= resplen;
            tp->StatusDataSGE.FlagsLength = htole32(fl);
      }

      mpt_lprt(mpt, MPT_PRT_DEBUG, 
          "STATUS_CCB %p (wit%s sense) tag %x req %p:%u resid %u\n",
          ccb, sense_data?"h" : "hout", ccb? ccb->csio.tag_id : -1, req,
          req->serno, tgt->resid);
      if (ccb) {
            ccb->ccb_h.status = CAM_SIM_QUEUED | CAM_REQ_INPROG;
            mpt_req_timeout(req, 60 * hz, mpt_timeout, ccb);
      }
      mpt_send_cmd(mpt, req);
}

static void
mpt_scsi_tgt_tsk_mgmt(struct mpt_softc *mpt, request_t *req, mpt_task_mgmt_t fc,
    tgt_resource_t *trtp, int init_id)
{
      struct ccb_immed_notify *inot;
      mpt_tgt_state_t *tgt;

      tgt = MPT_TGT_STATE(mpt, req);
      inot = (struct ccb_immed_notify *) STAILQ_FIRST(&trtp->inots);
      if (inot == NULL) {
            mpt_lprt(mpt, MPT_PRT_WARN, "no INOTSs- sending back BSY\n");
            mpt_scsi_tgt_status(mpt, NULL, req, SCSI_STATUS_BUSY, NULL);
            return;
      }
      STAILQ_REMOVE_HEAD(&trtp->inots, sim_links.stqe);
      mpt_lprt(mpt, MPT_PRT_DEBUG1,
          "Get FREE INOT %p lun %d\n", inot, inot->ccb_h.target_lun);

      memset(&inot->sense_data, 0, sizeof (inot->sense_data));
      inot->sense_len = 0;
      memset(inot->message_args, 0, sizeof (inot->message_args));
      inot->initiator_id = init_id; /* XXX */

      /*
       * This is a somewhat grotesque attempt to map from task management
       * to old style SCSI messages. God help us all.
       */
      switch (fc) {
      case MPT_ABORT_TASK_SET:
            inot->message_args[0] = MSG_ABORT_TAG;
            break;
      case MPT_CLEAR_TASK_SET:
            inot->message_args[0] = MSG_CLEAR_TASK_SET;
            break;
      case MPT_TARGET_RESET:
            inot->message_args[0] = MSG_TARGET_RESET;
            break;
      case MPT_CLEAR_ACA:
            inot->message_args[0] = MSG_CLEAR_ACA;
            break;
      case MPT_TERMINATE_TASK:
            inot->message_args[0] = MSG_ABORT_TAG;
            break;
      default:
            inot->message_args[0] = MSG_NOOP;
            break;
      }
      tgt->ccb = (union ccb *) inot;
      inot->ccb_h.status = CAM_MESSAGE_RECV|CAM_DEV_QFRZN;
      MPTLOCK_2_CAMLOCK(mpt);
      xpt_done((union ccb *)inot);
      CAMLOCK_2_MPTLOCK(mpt);
}

static void
mpt_scsi_tgt_atio(struct mpt_softc *mpt, request_t *req, uint32_t reply_desc)
{
      static uint8_t null_iqd[SHORT_INQUIRY_LENGTH] = {
          0x7f, 0x00, 0x02, 0x02, 0x20, 0x00, 0x00, 0x32,
           'F',  'R',  'E',  'E',  'B',  'S',  'D',  ' ',
           'L',  'S',  'I',  '-',  'L',  'O',  'G',  'I',
           'C',  ' ',  'N',  'U',  'L',  'D',  'E',  'V',
           '0',  '0',  '0',  '1'
      };
      struct ccb_accept_tio *atiop;
      lun_id_t lun;
      int tag_action = 0;
      mpt_tgt_state_t *tgt;
      tgt_resource_t *trtp = NULL;
      U8 *lunptr;
      U8 *vbuf;
      U16 itag;
      U16 ioindex;
      mpt_task_mgmt_t fct = MPT_NIL_TMT_VALUE;
      uint8_t *cdbp;

      /*
       * First, DMA sync the received command-
       * which is in the *request* * phys area.
       *
       * XXX: We could optimize this for a range
       */
      bus_dmamap_sync(mpt->request_dmat, mpt->request_dmap,
          BUS_DMASYNC_POSTREAD);

      /*
       * Stash info for the current command where we can get at it later.
       */
      vbuf = req->req_vbuf;
      vbuf += MPT_RQSL(mpt);

      /*
       * Get our state pointer set up.
       */
      tgt = MPT_TGT_STATE(mpt, req);
      if (tgt->state != TGT_STATE_LOADED) {
            mpt_tgt_dump_req_state(mpt, req);
            panic("bad target state in mpt_scsi_tgt_atio");
      }
      memset(tgt, 0, sizeof (mpt_tgt_state_t));
      tgt->state = TGT_STATE_IN_CAM;
      tgt->reply_desc = reply_desc;
      ioindex = GET_IO_INDEX(reply_desc);
      if (mpt->verbose >= MPT_PRT_DEBUG) {
            mpt_dump_data(mpt, "mpt_scsi_tgt_atio response", vbuf,
                max(sizeof (MPI_TARGET_FCP_CMD_BUFFER),
                max(sizeof (MPI_TARGET_SSP_CMD_BUFFER),
                sizeof (MPI_TARGET_SCSI_SPI_CMD_BUFFER))));
      }
      if (mpt->is_fc) {
            PTR_MPI_TARGET_FCP_CMD_BUFFER fc;
            fc = (PTR_MPI_TARGET_FCP_CMD_BUFFER) vbuf;
            if (fc->FcpCntl[2]) {
                  /*
                   * Task Management Request
                   */
                  switch (fc->FcpCntl[2]) {
                  case 0x2:
                        fct = MPT_ABORT_TASK_SET;
                        break;
                  case 0x4:
                        fct = MPT_CLEAR_TASK_SET;
                        break;
                  case 0x20:
                        fct = MPT_TARGET_RESET;
                        break;
                  case 0x40:
                        fct = MPT_CLEAR_ACA;
                        break;
                  case 0x80:
                        fct = MPT_TERMINATE_TASK;
                        break;
                  default:
                        mpt_prt(mpt, "CORRUPTED TASK MGMT BITS: 0x%x\n",
                            fc->FcpCntl[2]);
                        mpt_scsi_tgt_status(mpt, 0, req,
                            SCSI_STATUS_OK, 0);
                        return;
                  }
            } else {
                  switch (fc->FcpCntl[1]) {
                  case 0:
                        tag_action = MSG_SIMPLE_Q_TAG;
                        break;
                  case 1:
                        tag_action = MSG_HEAD_OF_Q_TAG;
                        break;
                  case 2:
                        tag_action = MSG_ORDERED_Q_TAG;
                        break;
                  default:
                        /*
                         * Bah. Ignore Untagged Queing and ACA
                         */
                        tag_action = MSG_SIMPLE_Q_TAG;
                        break;
                  }
            }
            tgt->resid = be32toh(fc->FcpDl);
            cdbp = fc->FcpCdb;
            lunptr = fc->FcpLun;
            itag = be16toh(fc->OptionalOxid);
      } else if (mpt->is_sas) {
            PTR_MPI_TARGET_SSP_CMD_BUFFER ssp;
            ssp = (PTR_MPI_TARGET_SSP_CMD_BUFFER) vbuf;
            cdbp = ssp->CDB;
            lunptr = ssp->LogicalUnitNumber;
            itag = ssp->InitiatorTag;
      } else {
            PTR_MPI_TARGET_SCSI_SPI_CMD_BUFFER sp;
            sp = (PTR_MPI_TARGET_SCSI_SPI_CMD_BUFFER) vbuf;
            cdbp = sp->CDB;
            lunptr = sp->LogicalUnitNumber;
            itag = sp->Tag;
      }

      /*
       * Generate a simple lun
       */
      switch (lunptr[0] & 0xc0) {
      case 0x40:
            lun = ((lunptr[0] & 0x3f) << 8) | lunptr[1];
            break;
      case 0:
            lun = lunptr[1];
            break;
      default:
            mpt_lprt(mpt, MPT_PRT_ERROR, "cannot handle this type lun\n");
            lun = 0xffff;
            break;
      }

      /*
       * Deal with non-enabled or bad luns here.
       */
      if (lun >= MPT_MAX_LUNS || mpt->tenabled == 0 ||
          mpt->trt[lun].enabled == 0) {
            if (mpt->twildcard) {
                  trtp = &mpt->trt_wildcard;
            } else if (fct == MPT_NIL_TMT_VALUE) {
                  /*
                   * In this case, we haven't got an upstream listener
                   * for either a specific lun or wildcard luns. We
                   * have to make some sensible response. For regular
                   * inquiry, just return some NOT HERE inquiry data.
                   * For VPD inquiry, report illegal field in cdb.
                   * For REQUEST SENSE, just return NO SENSE data.
                   * REPORT LUNS gets illegal command.
                   * All other commands get 'no such device'.
                   */
                  uint8_t *sp, cond, buf[MPT_SENSE_SIZE];
                  size_t len;

                  memset(buf, 0, MPT_SENSE_SIZE);
                  cond = SCSI_STATUS_CHECK_COND;
                  buf[0] = 0xf0;
                  buf[2] = 0x5;
                  buf[7] = 0x8;
                  sp = buf;
                  tgt->tag_id = MPT_MAKE_TAGID(mpt, req, ioindex);

                  switch (cdbp[0]) {
                  case INQUIRY:
                  {
                        if (cdbp[1] != 0) {
                              buf[12] = 0x26;
                              buf[13] = 0x01;
                              break;
                        }
                        len = min(tgt->resid, cdbp[4]);
                        len = min(len, sizeof (null_iqd));
                        mpt_lprt(mpt, MPT_PRT_DEBUG,
                            "local inquiry %ld bytes\n", (long) len);
                        mpt_scsi_tgt_local(mpt, req, lun, 1,
                            null_iqd, len);
                        return;
                  }
                  case REQUEST_SENSE:
                  {
                        buf[2] = 0x0;
                        len = min(tgt->resid, cdbp[4]);
                        len = min(len, sizeof (buf));
                        mpt_lprt(mpt, MPT_PRT_DEBUG,
                            "local reqsense %ld bytes\n", (long) len);
                        mpt_scsi_tgt_local(mpt, req, lun, 1,
                            buf, len);
                        return;
                  }
                  case REPORT_LUNS:
                        mpt_lprt(mpt, MPT_PRT_DEBUG, "REPORT LUNS\n");
                        buf[12] = 0x26;
                        return;
                  default:
                        mpt_lprt(mpt, MPT_PRT_DEBUG,
                            "CMD 0x%x to unmanaged lun %u\n",
                            cdbp[0], lun);
                        buf[12] = 0x25;
                        break;
                  }
                  mpt_scsi_tgt_status(mpt, NULL, req, cond, sp);
                  return;
            }
            /* otherwise, leave trtp NULL */
      } else {
            trtp = &mpt->trt[lun];
      }

      /*
       * Deal with any task management
       */
      if (fct != MPT_NIL_TMT_VALUE) {
            if (trtp == NULL) {
                  mpt_prt(mpt, "task mgmt function %x but no listener\n",
                      fct);
                  mpt_scsi_tgt_status(mpt, 0, req,
                      SCSI_STATUS_OK, 0);
            } else {
                  mpt_scsi_tgt_tsk_mgmt(mpt, req, fct, trtp,
                      GET_INITIATOR_INDEX(reply_desc));
            }
            return;
      }


      atiop = (struct ccb_accept_tio *) STAILQ_FIRST(&trtp->atios);
      if (atiop == NULL) {
            mpt_lprt(mpt, MPT_PRT_WARN,
                "no ATIOs for lun %u- sending back %s\n", lun,
                mpt->tenabled? "QUEUE FULL" : "BUSY");
            mpt_scsi_tgt_status(mpt, NULL, req,
                mpt->tenabled? SCSI_STATUS_QUEUE_FULL : SCSI_STATUS_BUSY,
                NULL);
            return;
      }
      STAILQ_REMOVE_HEAD(&trtp->atios, sim_links.stqe);
      mpt_lprt(mpt, MPT_PRT_DEBUG1,
          "Get FREE ATIO %p lun %d\n", atiop, atiop->ccb_h.target_lun);
      atiop->ccb_h.ccb_mpt_ptr = mpt;
      atiop->ccb_h.status = CAM_CDB_RECVD;
      atiop->ccb_h.target_lun = lun;
      atiop->sense_len = 0;
      atiop->init_id = GET_INITIATOR_INDEX(reply_desc);
      atiop->cdb_len = mpt_cdblen(cdbp[0], 16);
      memcpy(atiop->cdb_io.cdb_bytes, cdbp, atiop->cdb_len);

      /*
       * The tag we construct here allows us to find the
       * original request that the command came in with.
       *
       * This way we don't have to depend on anything but the
       * tag to find things when CCBs show back up from CAM.
       */
      atiop->tag_id = MPT_MAKE_TAGID(mpt, req, ioindex);
      tgt->tag_id = atiop->tag_id;
      if (tag_action) {
            atiop->tag_action = tag_action;
            atiop->ccb_h.flags = CAM_TAG_ACTION_VALID;
      }
      if (mpt->verbose >= MPT_PRT_DEBUG) {
            int i;
            mpt_prt(mpt, "START_CCB %p for lun %u CDB=<", atiop,
                atiop->ccb_h.target_lun);
            for (i = 0; i < atiop->cdb_len; i++) {
                  mpt_prtc(mpt, "%02x%c", cdbp[i] & 0xff,
                      (i == (atiop->cdb_len - 1))? '>' : ' ');
            }
            mpt_prtc(mpt, " itag %x tag %x rdesc %x dl=%u\n",
                itag, atiop->tag_id, tgt->reply_desc, tgt->resid);
      }
      
      MPTLOCK_2_CAMLOCK(mpt);
      xpt_done((union ccb *)atiop);
      CAMLOCK_2_MPTLOCK(mpt);
}

static void
mpt_tgt_dump_tgt_state(struct mpt_softc *mpt, request_t *req)
{
      mpt_tgt_state_t *tgt = MPT_TGT_STATE(mpt, req);

      mpt_prt(mpt, "req %p:%u tgt:rdesc 0x%x resid %u xfrd %u ccb %p treq %p "
          "nx %d tag 0x%08x state=%d\n", req, req->serno, tgt->reply_desc,
          tgt->resid, tgt->bytes_xfered, tgt->ccb, tgt->req, tgt->nxfers,
          tgt->tag_id, tgt->state);
}

static void
mpt_tgt_dump_req_state(struct mpt_softc *mpt, request_t *req)
{
      mpt_prt(mpt, "req %p:%u index %u (%x) state %x\n", req, req->serno,
          req->index, req->index, req->state);
      mpt_tgt_dump_tgt_state(mpt, req);
}

static int
mpt_scsi_tgt_reply_handler(struct mpt_softc *mpt, request_t *req,
    uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame)
{
      int dbg;
      union ccb *ccb;
      U16 status;

      if (reply_frame == NULL) {
            /*
             * Figure out what the state of the command is.
             */
            mpt_tgt_state_t *tgt = MPT_TGT_STATE(mpt, req);

#ifdef      INVARIANTS
            mpt_req_spcl(mpt, req, "turbo scsi_tgt_reply", __LINE__);
            if (tgt->req) {
                  mpt_req_not_spcl(mpt, tgt->req,
                      "turbo scsi_tgt_reply associated req", __LINE__);
            }
#endif
            switch(tgt->state) {
            case TGT_STATE_LOADED:
                  /*
                   * This is a new command starting.
                   */
                  mpt_scsi_tgt_atio(mpt, req, reply_desc);
                  break;
            case TGT_STATE_MOVING_DATA:
            {
                  uint8_t *sp = NULL, sense[MPT_SENSE_SIZE];

                  ccb = tgt->ccb;
                  if (tgt->req == NULL) {
                        panic("mpt: turbo target reply with null "
                            "associated request moving data");
                        /* NOTREACHED */
                  }
                  if (ccb == NULL) {
                        if (tgt->is_local == 0) {
                              panic("mpt: turbo target reply with "
                                  "null associated ccb moving data");
                              /* NOTREACHED */
                        }
                        mpt_lprt(mpt, MPT_PRT_DEBUG,
                            "TARGET_ASSIST local done\n");
                        TAILQ_REMOVE(&mpt->request_pending_list,
                            tgt->req, links);
                        mpt_free_request(mpt, tgt->req);
                        tgt->req = NULL;
                        mpt_scsi_tgt_status(mpt, NULL, req,
                            0, NULL);
                        return (TRUE);
                  }
                  tgt->ccb = NULL;
                  tgt->nxfers++;
                  mpt_req_untimeout(req, mpt_timeout, ccb);
                  mpt_lprt(mpt, MPT_PRT_DEBUG,
                      "TARGET_ASSIST %p (req %p:%u) done tag 0x%x\n",
                      ccb, tgt->req, tgt->req->serno, ccb->csio.tag_id);
                  /*
                   * Free the Target Assist Request
                   */
                  KASSERT(tgt->req->ccb == ccb,
                      ("tgt->req %p:%u tgt->req->ccb %p", tgt->req,
                      tgt->req->serno, tgt->req->ccb));
                  TAILQ_REMOVE(&mpt->request_pending_list,
                      tgt->req, links);
                  mpt_free_request(mpt, tgt->req);
                  tgt->req = NULL;

                  /*
                   * Do we need to send status now? That is, are
                   * we done with all our data transfers?
                   */
                  if ((ccb->ccb_h.flags & CAM_SEND_STATUS) == 0) {
                        mpt_set_ccb_status(ccb, CAM_REQ_CMP);
                        ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
                        KASSERT(ccb->ccb_h.status,
                            ("zero ccb sts at %d\n", __LINE__));
                        tgt->state = TGT_STATE_IN_CAM;
                        if (mpt->outofbeer) {
                              ccb->ccb_h.status |= CAM_RELEASE_SIMQ;
                              mpt->outofbeer = 0;
                              mpt_lprt(mpt, MPT_PRT_DEBUG, "THAWQ\n");
                        }
                        MPTLOCK_2_CAMLOCK(mpt);
                        xpt_done(ccb);
                        CAMLOCK_2_MPTLOCK(mpt);
                        break;
                  }
                  /*
                   * Otherwise, send status (and sense)
                   */
                  if (ccb->ccb_h.flags & CAM_SEND_SENSE) {
                        sp = sense;
                        memcpy(sp, &ccb->csio.sense_data,
                           min(ccb->csio.sense_len, MPT_SENSE_SIZE));
                  }
                  mpt_scsi_tgt_status(mpt, ccb, req,
                      ccb->csio.scsi_status, sp);
                  break;
            }
            case TGT_STATE_SENDING_STATUS:
            case TGT_STATE_MOVING_DATA_AND_STATUS:
            {
                  int ioindex;
                  ccb = tgt->ccb;

                  if (tgt->req == NULL) {
                        panic("mpt: turbo target reply with null "
                            "associated request sending status");
                        /* NOTREACHED */
                  }

                  if (ccb) {
                        tgt->ccb = NULL;
                        if (tgt->state ==
                            TGT_STATE_MOVING_DATA_AND_STATUS) {
                              tgt->nxfers++;
                        }
                        mpt_req_untimeout(req, mpt_timeout, ccb);
                        if (ccb->ccb_h.flags & CAM_SEND_SENSE) {
                              ccb->ccb_h.status |= CAM_SENT_SENSE;
                        }
                        mpt_lprt(mpt, MPT_PRT_DEBUG,
                            "TARGET_STATUS tag %x sts %x flgs %x req "
                            "%p\n", ccb->csio.tag_id, ccb->ccb_h.status,
                            ccb->ccb_h.flags, tgt->req);
                        /*
                         * Free the Target Send Status Request
                         */
                        KASSERT(tgt->req->ccb == ccb,
                            ("tgt->req %p:%u tgt->req->ccb %p",
                            tgt->req, tgt->req->serno, tgt->req->ccb));
                        /*
                         * Notify CAM that we're done
                         */
                        mpt_set_ccb_status(ccb, CAM_REQ_CMP);
                        ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
                        KASSERT(ccb->ccb_h.status,
                            ("ZERO ccb sts at %d\n", __LINE__));
                        tgt->ccb = NULL;
                  } else {
                        mpt_lprt(mpt, MPT_PRT_DEBUG,
                            "TARGET_STATUS non-CAM for  req %p:%u\n",
                            tgt->req, tgt->req->serno);
                  }
                  TAILQ_REMOVE(&mpt->request_pending_list,
                      tgt->req, links);
                  mpt_free_request(mpt, tgt->req);
                  tgt->req = NULL;

                  /*
                   * And re-post the Command Buffer.
                   * This will reset the state.
                   */
                  ioindex = GET_IO_INDEX(reply_desc);
                  TAILQ_REMOVE(&mpt->request_pending_list, req, links);
                  tgt->is_local = 0;
                  mpt_post_target_command(mpt, req, ioindex);

                  /*
                   * And post a done for anyone who cares
                   */
                  if (ccb) {
                        if (mpt->outofbeer) {
                              ccb->ccb_h.status |= CAM_RELEASE_SIMQ;
                              mpt->outofbeer = 0;
                              mpt_lprt(mpt, MPT_PRT_DEBUG, "THAWQ\n");
                        }
                        MPTLOCK_2_CAMLOCK(mpt);
                        xpt_done(ccb);
                        CAMLOCK_2_MPTLOCK(mpt);
                  }
                  break;
            }
            case TGT_STATE_NIL:     /* XXX This Never Happens XXX */
                  tgt->state = TGT_STATE_LOADED;
                  break;
            default:
                  mpt_prt(mpt, "Unknown Target State 0x%x in Context "
                      "Reply Function\n", tgt->state);
            }
            return (TRUE);
      }

      status = le16toh(reply_frame->IOCStatus);
      if (status != MPI_IOCSTATUS_SUCCESS) {
            dbg = MPT_PRT_ERROR;
      } else {
            dbg = MPT_PRT_DEBUG1;
      }

      mpt_lprt(mpt, dbg,
          "SCSI_TGT REPLY: req=%p:%u reply=%p func=%x IOCstatus 0x%x\n",
           req, req->serno, reply_frame, reply_frame->Function, status);

      switch (reply_frame->Function) {
      case MPI_FUNCTION_TARGET_CMD_BUFFER_POST:
      {
            mpt_tgt_state_t *tgt;
#ifdef      INVARIANTS
            mpt_req_spcl(mpt, req, "tgt reply BUFFER POST", __LINE__);
#endif
            if (status != MPI_IOCSTATUS_SUCCESS) {
                  /*
                   * XXX What to do?
                   */
                  break;
            }
            tgt = MPT_TGT_STATE(mpt, req);
            KASSERT(tgt->state == TGT_STATE_LOADING,
                ("bad state 0x%x on reply to buffer post\n", tgt->state));
            mpt_assign_serno(mpt, req);
            tgt->state = TGT_STATE_LOADED;
            break;
      }
      case MPI_FUNCTION_TARGET_ASSIST:
#ifdef      INVARIANTS
            mpt_req_not_spcl(mpt, req, "tgt reply TARGET ASSIST", __LINE__);
#endif
            mpt_prt(mpt, "target assist completion\n");
            TAILQ_REMOVE(&mpt->request_pending_list, req, links);
            mpt_free_request(mpt, req);
            break;
      case MPI_FUNCTION_TARGET_STATUS_SEND:
#ifdef      INVARIANTS
            mpt_req_not_spcl(mpt, req, "tgt reply STATUS SEND", __LINE__);
#endif
            mpt_prt(mpt, "status send completion\n");
            TAILQ_REMOVE(&mpt->request_pending_list, req, links);
            mpt_free_request(mpt, req);
            break;
      case MPI_FUNCTION_TARGET_MODE_ABORT:
      {
            PTR_MSG_TARGET_MODE_ABORT_REPLY abtrp =
                (PTR_MSG_TARGET_MODE_ABORT_REPLY) reply_frame;
            PTR_MSG_TARGET_MODE_ABORT abtp =
                (PTR_MSG_TARGET_MODE_ABORT) req->req_vbuf;
            uint32_t cc = GET_IO_INDEX(le32toh(abtp->ReplyWord));
#ifdef      INVARIANTS
            mpt_req_not_spcl(mpt, req, "tgt reply TMODE ABORT", __LINE__);
#endif
            mpt_prt(mpt, "ABORT RX_ID 0x%x Complete; status 0x%x cnt %u\n",
                cc, le16toh(abtrp->IOCStatus), le32toh(abtrp->AbortCount));
            TAILQ_REMOVE(&mpt->request_pending_list, req, links);
            mpt_free_request(mpt, req);
            break;
      }
      default:
            mpt_prt(mpt, "Unknown Target Address Reply Function code: "
                "0x%x\n", reply_frame->Function);
            break;
      }
      return (TRUE);
}

Generated by  Doxygen 1.6.0   Back to index