Logo Search packages:      
Sourcecode: kfreebsd-7 version File versions  Download package

if_wpi.c

/*-
 * Copyright (c) 2006,2007
 *    Damien Bergamini <damien.bergamini@free.fr>
 *    Benjamin Close <Benjamin.Close@clearchain.com>
 *
 * Permission to use, copy, modify, and distribute this software for any
 * purpose with or without fee is hereby granted, provided that the above
 * copyright notice and this permission notice appear in all copies.
 *
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 */

#define VERSION "20071127"

#include <sys/cdefs.h>
__FBSDID("$FreeBSD: src/sys/dev/wpi/if_wpi.c,v 1.5.2.1.2.1 2008/02/02 07:30:02 sam Exp $");

/*
 * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
 *
 * The 3945ABG network adapter doesn't use traditional hardware as
 * many other adaptors do. Instead at run time the eeprom is set into a known
 * state and told to load boot firmware. The boot firmware loads an init and a
 * main  binary firmware image into SRAM on the card via DMA.
 * Once the firmware is loaded, the driver/hw then
 * communicate by way of circular dma rings via the the SRAM to the firmware.
 *
 * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings.
 * The 4 tx data rings allow for prioritization QoS.
 *
 * The rx data ring consists of 32 dma buffers. Two registers are used to
 * indicate where in the ring the driver and the firmware are up to. The
 * driver sets the initial read index (reg1) and the initial write index (reg2),
 * the firmware updates the read index (reg1) on rx of a packet and fires an
 * interrupt. The driver then processes the buffers starting at reg1 indicating
 * to the firmware which buffers have been accessed by updating reg2. At the
 * same time allocating new memory for the processed buffer.
 *
 * A similar thing happens with the tx rings. The difference is the firmware
 * stop processing buffers once the queue is full and until confirmation
 * of a successful transmition (tx_intr) has occurred.
 *
 * The command ring operates in the same manner as the tx queues.
 *
 * All communication direct to the card (ie eeprom) is classed as Stage1
 * communication
 *
 * All communication via the firmware to the card is classed as State2.
 * The firmware consists of 2 parts. A bootstrap firmware and a runtime
 * firmware. The bootstrap firmware and runtime firmware are loaded
 * from host memory via dma to the card then told to execute. From this point
 * on the majority of communications between the driver and the card goes
 * via the firmware.
 */

#include <sys/param.h>
#include <sys/sysctl.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/queue.h>
#include <sys/taskqueue.h>
#include <sys/module.h>
#include <sys/bus.h>
#include <sys/endian.h>
#include <sys/linker.h>
#include <sys/firmware.h>

#if (__FreeBSD_version > 700000)
#define WPI_CURRENT
#endif

#include <machine/bus.h>
#include <machine/resource.h>
#ifndef WPI_CURRENT
#include <machine/clock.h>
#endif
#include <sys/rman.h>

#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>

#include <net/bpf.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>

#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_radiotap.h>
#include <net80211/ieee80211_regdomain.h>

#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#include <netinet/if_ether.h>

#include <dev/wpi/if_wpireg.h>
#include <dev/wpi/if_wpivar.h>

#define WPI_DEBUG

#ifdef WPI_DEBUG
#define DPRINTF(x)      do { if (wpi_debug != 0) printf x; } while (0)
#define DPRINTFN(n, x)  do { if (wpi_debug & n) printf x; } while (0)

enum {
      WPI_DEBUG_UNUSED  = 0x00000001,   /* Unused */
      WPI_DEBUG_HW            = 0x00000002,   /* Stage 1 (eeprom) debugging */
      WPI_DEBUG_TX            = 0x00000004,   /* Stage 2 TX intrp debugging*/
      WPI_DEBUG_RX            = 0x00000008,   /* Stage 2 RX intrp debugging */
      WPI_DEBUG_CMD           = 0x00000010,   /* Stage 2 CMD intrp debugging*/
      WPI_DEBUG_FIRMWARE      = 0x00000020,   /* firmware(9) loading debug  */
      WPI_DEBUG_DMA           = 0x00000040,   /* DMA (de)allocations/syncs  */
      WPI_DEBUG_SCANNING      = 0x00000080,   /* Stage 2 Scanning debugging */
      WPI_DEBUG_NOTIFY  = 0x00000100,   /* State 2 Noftif intr debug */
      WPI_DEBUG_TEMP          = 0x00000200,   /* TXPower/Temp Calibration */
      WPI_DEBUG_OPS           = 0x00000400,   /* wpi_ops taskq debug */
      WPI_DEBUG_WATCHDOG      = 0x00000800,   /* Watch dog debug */
      WPI_DEBUG_ANY           = 0xffffffff
};

int wpi_debug = 0;
SYSCTL_INT(_debug, OID_AUTO, wpi, CTLFLAG_RW, &wpi_debug, 0, "wpi debug level");

#else
#define DPRINTF(x)
#define DPRINTFN(n, x)
#endif

struct wpi_ident {
      uint16_t    vendor;
      uint16_t    device;
      uint16_t    subdevice;
      const char  *name;
};

static const struct wpi_ident wpi_ident_table[] = {
      /* The below entries support ABG regardless of the subid */
      { 0x8086, 0x4222,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
      { 0x8086, 0x4227,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
      /* The below entries only support BG */
      { 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945AB"  },
      { 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945AB"  },
      { 0x8086, 0x4222, 0x1014, "Intel(R) PRO/Wireless 3945AB"  },
      { 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945AB"  },
      { 0, 0, 0, NULL }
};

static int  wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *,
                void **, bus_size_t, bus_size_t, int);
static void wpi_dma_contig_free(struct wpi_dma_info *);
static void wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
static int  wpi_alloc_shared(struct wpi_softc *);
static void wpi_free_shared(struct wpi_softc *);
static struct wpi_rbuf *wpi_alloc_rbuf(struct wpi_softc *);
static void wpi_free_rbuf(void *, void *);
static int  wpi_alloc_rpool(struct wpi_softc *);
static void wpi_free_rpool(struct wpi_softc *);
static int  wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
static void wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
static void wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
static int  wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
                int, int);
static void wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
static void wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
static struct     ieee80211_node *wpi_node_alloc(struct ieee80211_node_table *);
static int  wpi_media_change(struct ifnet *);
static int  wpi_newstate(struct ieee80211com *, enum ieee80211_state, int);
static void wpi_mem_lock(struct wpi_softc *);
static void wpi_mem_unlock(struct wpi_softc *);
static uint32_t   wpi_mem_read(struct wpi_softc *, uint16_t);
static void wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
static void wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
                const uint32_t *, int);
static uint16_t   wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
static int  wpi_alloc_fwmem(struct wpi_softc *);
static void wpi_free_fwmem(struct wpi_softc *);
static int  wpi_load_firmware(struct wpi_softc *);
static void wpi_unload_firmware(struct wpi_softc *);
static int  wpi_load_microcode(struct wpi_softc *, const uint8_t *, int);
static void wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
                struct wpi_rx_data *);
static void wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
static void wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
static void wpi_notif_intr(struct wpi_softc *);
static void wpi_intr(void *);
static void wpi_ops(void *, int);
static uint8_t    wpi_plcp_signal(int);
static int  wpi_queue_cmd(struct wpi_softc *, int);
static void wpi_tick(void *);
#if 0
static void wpi_radio_on(void *, int);
static void wpi_radio_off(void *, int);
#endif
static int  wpi_tx_data(struct wpi_softc *, struct mbuf *,
                struct ieee80211_node *, int);
static void wpi_start(struct ifnet *);
static void wpi_scan_start(struct ieee80211com *);
static void wpi_scan_end(struct ieee80211com *);
static void wpi_set_channel(struct ieee80211com *);
static void wpi_scan_curchan(struct ieee80211com *, unsigned long);
static void wpi_scan_mindwell(struct ieee80211com *);
static void wpi_watchdog(struct ifnet *);
static int  wpi_ioctl(struct ifnet *, u_long, caddr_t);
static void wpi_restart(void *, int);
static void wpi_read_eeprom(struct wpi_softc *);
static void wpi_read_eeprom_channels(struct wpi_softc *, int);
static void wpi_read_eeprom_group(struct wpi_softc *, int);
static int  wpi_cmd(struct wpi_softc *, int, const void *, int, int);
static int  wpi_wme_update(struct ieee80211com *);
static int  wpi_mrr_setup(struct wpi_softc *);
static void wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
static void wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
#if 0
static int  wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
#endif
static int  wpi_auth(struct wpi_softc *);
static int  wpi_scan(struct wpi_softc *);
static int  wpi_config(struct wpi_softc *);
static void wpi_stop_master(struct wpi_softc *);
static int  wpi_power_up(struct wpi_softc *);
static int  wpi_reset(struct wpi_softc *);
static void wpi_hw_config(struct wpi_softc *);
static void wpi_init(void *);
static void wpi_stop(struct wpi_softc *);
static void wpi_stop_locked(struct wpi_softc *);
static void wpi_iter_func(void *, struct ieee80211_node *);

static void wpi_newassoc(struct ieee80211_node *, int);
static int  wpi_set_txpower(struct wpi_softc *, struct ieee80211_channel *,
                int);
static void wpi_calib_timeout(void *);
static void wpi_power_calibration(struct wpi_softc *, int);
static int  wpi_get_power_index(struct wpi_softc *,
                struct wpi_power_group *, struct ieee80211_channel *, int);
static const char *wpi_cmd_str(int);
static int wpi_probe(device_t);
static int wpi_attach(device_t);
static int wpi_detach(device_t);
static int wpi_shutdown(device_t);
static int wpi_suspend(device_t);
static int wpi_resume(device_t);


static device_method_t wpi_methods[] = {
      /* Device interface */
      DEVMETHOD(device_probe,       wpi_probe),
      DEVMETHOD(device_attach,      wpi_attach),
      DEVMETHOD(device_detach,      wpi_detach),
      DEVMETHOD(device_shutdown,    wpi_shutdown),
      DEVMETHOD(device_suspend,     wpi_suspend),
      DEVMETHOD(device_resume,      wpi_resume),

      { 0, 0 }
};

static driver_t wpi_driver = {
      "wpi",
      wpi_methods,
      sizeof (struct wpi_softc)
};

static devclass_t wpi_devclass;

DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, 0, 0);

static const uint8_t wpi_ridx_to_plcp[] = {
      /* OFDM: IEEE Std 802.11a-1999, pp. 14 Table 80 */
      /* R1-R4 (ral/ural is R4-R1) */
      0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3,
      /* CCK: device-dependent */
      10, 20, 55, 110
};
static const uint8_t wpi_ridx_to_rate[] = {
      12, 18, 24, 36, 48, 72, 96, 108, /* OFDM */
      2, 4, 11, 22 /*CCK */
};


static int
wpi_probe(device_t dev)
{
      const struct wpi_ident *ident;

      for (ident = wpi_ident_table; ident->name != NULL; ident++) {
            if (pci_get_vendor(dev) == ident->vendor &&
                pci_get_device(dev) == ident->device) {
                  device_set_desc(dev, ident->name);
                  return 0;
            }
      }
      return ENXIO;
}

/**
 * Load the firmare image from disk to the allocated dma buffer.
 * we also maintain the reference to the firmware pointer as there
 * is times where we may need to reload the firmware but we are not
 * in a context that can access the filesystem (ie taskq cause by restart)
 *
 * @return 0 on success, an errno on failure
 */
static int
wpi_load_firmware(struct wpi_softc *sc)
{
#ifdef WPI_CURRENT
      const struct firmware *fp ;
#else
      struct firmware *fp;
#endif
      struct wpi_dma_info *dma = &sc->fw_dma;
      const struct wpi_firmware_hdr *hdr;
      const uint8_t *itext, *idata, *rtext, *rdata, *btext;
      uint32_t itextsz, idatasz, rtextsz, rdatasz, btextsz;
      int error;
      WPI_LOCK_DECL;

      DPRINTFN(WPI_DEBUG_FIRMWARE,
          ("Attempting Loading Firmware from wpi_fw module\n"));

      WPI_UNLOCK(sc);

      if (sc->fw_fp == NULL && (sc->fw_fp = firmware_get("wpifw")) == NULL) {
            device_printf(sc->sc_dev,
                "could not load firmware image 'wpifw'\n");
            error = ENOENT;
            WPI_LOCK(sc);
            goto fail;
      }

      fp = sc->fw_fp;

      WPI_LOCK(sc);

      /* Validate the firmware is minimum a particular version */
      if (fp->version < WPI_FW_MINVERSION) {
          device_printf(sc->sc_dev,
                     "firmware version is too old. Need %d, got %d\n",
                     WPI_FW_MINVERSION,
                     fp->version);
          error = ENXIO;
          goto fail;
      }

      if (fp->datasize < sizeof (struct wpi_firmware_hdr)) {
            device_printf(sc->sc_dev,
                "firmware file too short: %zu bytes\n", fp->datasize);
            error = ENXIO;
            goto fail;
      }

      hdr = (const struct wpi_firmware_hdr *)fp->data;

      /*     |  RUNTIME FIRMWARE   |    INIT FIRMWARE    | BOOT FW  |
         |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */

      rtextsz = le32toh(hdr->rtextsz);
      rdatasz = le32toh(hdr->rdatasz);
      itextsz = le32toh(hdr->itextsz);
      idatasz = le32toh(hdr->idatasz);
      btextsz = le32toh(hdr->btextsz);

      /* check that all firmware segments are present */
      if (fp->datasize < sizeof (struct wpi_firmware_hdr) +
            rtextsz + rdatasz + itextsz + idatasz + btextsz) {
            device_printf(sc->sc_dev,
                "firmware file too short: %zu bytes\n", fp->datasize);
            error = ENXIO; /* XXX appropriate error code? */
            goto fail;
      }

      /* get pointers to firmware segments */
      rtext = (const uint8_t *)(hdr + 1);
      rdata = rtext + rtextsz;
      itext = rdata + rdatasz;
      idata = itext + itextsz;
      btext = idata + idatasz;

      DPRINTFN(WPI_DEBUG_FIRMWARE,
          ("Firmware Version: Major %d, Minor %d, Driver %d, \n"
           "runtime (text: %u, data: %u) init (text: %u, data %u) boot (text %u)\n",
           (le32toh(hdr->version) & 0xff000000) >> 24,
           (le32toh(hdr->version) & 0x00ff0000) >> 16,
           (le32toh(hdr->version) & 0x0000ffff),
           rtextsz, rdatasz,
           itextsz, idatasz, btextsz));

      DPRINTFN(WPI_DEBUG_FIRMWARE,("rtext 0x%x\n", *(const uint32_t *)rtext));
      DPRINTFN(WPI_DEBUG_FIRMWARE,("rdata 0x%x\n", *(const uint32_t *)rdata));
      DPRINTFN(WPI_DEBUG_FIRMWARE,("itext 0x%x\n", *(const uint32_t *)itext));
      DPRINTFN(WPI_DEBUG_FIRMWARE,("idata 0x%x\n", *(const uint32_t *)idata));
      DPRINTFN(WPI_DEBUG_FIRMWARE,("btext 0x%x\n", *(const uint32_t *)btext));

      /* sanity checks */
      if (rtextsz > WPI_FW_MAIN_TEXT_MAXSZ ||
          rdatasz > WPI_FW_MAIN_DATA_MAXSZ ||
          itextsz > WPI_FW_INIT_TEXT_MAXSZ ||
          idatasz > WPI_FW_INIT_DATA_MAXSZ ||
          btextsz > WPI_FW_BOOT_TEXT_MAXSZ ||
          (btextsz & 3) != 0) {
            device_printf(sc->sc_dev, "firmware invalid\n");
            error = EINVAL;
            goto fail;
      }

      /* copy initialization images into pre-allocated DMA-safe memory */
      memcpy(dma->vaddr, idata, idatasz);
      memcpy(dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, itext, itextsz);

      bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);

      /* tell adapter where to find initialization images */
      wpi_mem_lock(sc);
      wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
      wpi_mem_write(sc, WPI_MEM_DATA_SIZE, idatasz);
      wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
          dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
      wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, itextsz);
      wpi_mem_unlock(sc);

      /* load firmware boot code */
      if ((error = wpi_load_microcode(sc, btext, btextsz)) != 0) {
          device_printf(sc->sc_dev, "Failed to load microcode\n");
          goto fail;
      }

      /* now press "execute" */
      WPI_WRITE(sc, WPI_RESET, 0);

      /* wait at most one second for the first alive notification */
      if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
            device_printf(sc->sc_dev,
                "timeout waiting for adapter to initialize\n");
            goto fail;
      }

      /* copy runtime images into pre-allocated DMA-sage memory */
      memcpy(dma->vaddr, rdata, rdatasz);
      memcpy(dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, rtext, rtextsz);
      bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);

      /* tell adapter where to find runtime images */
      wpi_mem_lock(sc);
      wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
      wpi_mem_write(sc, WPI_MEM_DATA_SIZE, rdatasz);
      wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
          dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
      wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | rtextsz);
      wpi_mem_unlock(sc);

      /* wait at most one second for the first alive notification */
      if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
            device_printf(sc->sc_dev,
                "timeout waiting for adapter to initialize2\n");
            goto fail;
      }

      DPRINTFN(WPI_DEBUG_FIRMWARE,
          ("Firmware loaded to driver successfully\n"));
      return error;
fail:
      wpi_unload_firmware(sc);
      return error;
}

/**
 * Free the referenced firmware image
 */
static void
wpi_unload_firmware(struct wpi_softc *sc)
{
      WPI_LOCK_DECL;

      if (sc->fw_fp) {
            WPI_UNLOCK(sc);
            firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
            WPI_LOCK(sc);
            sc->fw_fp = NULL;
      }
}

static int
wpi_attach(device_t dev)
{
      struct wpi_softc *sc = device_get_softc(dev);
      struct ifnet *ifp;
      struct ieee80211com *ic = &sc->sc_ic;
      int ac, error, supportsa = 1;
      uint32_t tmp;
      const struct wpi_ident *ident;

      sc->sc_dev = dev;

      if (bootverbose || wpi_debug)
          device_printf(sc->sc_dev,"Driver Revision %s\n", VERSION);

      /*
       * Some card's only support 802.11b/g not a, check to see if
       * this is one such card. A 0x0 in the subdevice table indicates
       * the entire subdevice range is to be ignored.
       */
      for (ident = wpi_ident_table; ident->name != NULL; ident++) {
            if (ident->subdevice &&
                pci_get_subdevice(dev) == ident->subdevice) {
                supportsa = 0;
                break;
            }
      }

#if __FreeBSD_version >= 700000
      /*
       * Create the taskqueues used by the driver. Primarily
       * sc_tq handles most the task
       */
      sc->sc_tq = taskqueue_create("wpi_taskq", M_NOWAIT | M_ZERO,
          taskqueue_thread_enqueue, &sc->sc_tq);
      taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq",
          device_get_nameunit(dev));

      sc->sc_tq2 = taskqueue_create("wpi_taskq2", M_NOWAIT | M_ZERO,
          taskqueue_thread_enqueue, &sc->sc_tq2);
      taskqueue_start_threads(&sc->sc_tq2, 1, PI_NET, "%s taskq2",
          device_get_nameunit(dev));
#else
#error "Sorry, this driver is not yet ready for FreeBSD < 7.0"
#endif

      /* Create the tasks that can be queued */
#if 0
      TASK_INIT(&sc->sc_radioontask, 0, wpi_radio_on, sc);
      TASK_INIT(&sc->sc_radioofftask, 0, wpi_radio_off, sc);
#endif
      TASK_INIT(&sc->sc_opstask, 0, wpi_ops, sc);
      TASK_INIT(&sc->sc_restarttask, 0, wpi_restart, sc);

      WPI_LOCK_INIT(sc);
      WPI_CMD_LOCK_INIT(sc);

      callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0);
      callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0);

      if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
            device_printf(dev, "chip is in D%d power mode "
                "-- setting to D0\n", pci_get_powerstate(dev));
            pci_set_powerstate(dev, PCI_POWERSTATE_D0);
      }

      /* disable the retry timeout register */
      pci_write_config(dev, 0x41, 0, 1);

      /* enable bus-mastering */
      pci_enable_busmaster(dev);

      sc->mem_rid = PCIR_BAR(0);
      sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
          RF_ACTIVE);
      if (sc->mem == NULL) {
            device_printf(dev, "could not allocate memory resource\n");
            error = ENOMEM;
            goto fail;
      }

      sc->sc_st = rman_get_bustag(sc->mem);
      sc->sc_sh = rman_get_bushandle(sc->mem);

      sc->irq_rid = 0;
      sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
          RF_ACTIVE | RF_SHAREABLE);
      if (sc->irq == NULL) {
            device_printf(dev, "could not allocate interrupt resource\n");
            error = ENOMEM;
            goto fail;
      }

      /*
       * Allocate DMA memory for firmware transfers.
       */
      if ((error = wpi_alloc_fwmem(sc)) != 0) {
            printf(": could not allocate firmware memory\n");
            error = ENOMEM;
            goto fail;
      }

      /*
       * Put adapter into a known state.
       */
      if ((error = wpi_reset(sc)) != 0) {
            device_printf(dev, "could not reset adapter\n");
            goto fail;
      }

      wpi_mem_lock(sc);
      tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
      if (bootverbose || wpi_debug)
          device_printf(sc->sc_dev, "Hardware Revision (0x%X)\n", tmp);

      wpi_mem_unlock(sc);

      /* Allocate shared page */
      if ((error = wpi_alloc_shared(sc)) != 0) {
            device_printf(dev, "could not allocate shared page\n");
            goto fail;
      }

      /*
       * Allocate the receive buffer pool. The recieve buffers are
       * WPI_RBUF_SIZE in length (3k) this is bigger than MCLBYTES
       * hence we can't simply use a cluster and used mapped dma memory
       * instead.
       */
      if ((error = wpi_alloc_rpool(sc)) != 0) {
          device_printf(dev, "could not allocate Rx buffers\n");
          goto fail;
      }

      /* tx data queues  - 4 for QoS purposes */
      for (ac = 0; ac < WME_NUM_AC; ac++) {
            error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
            if (error != 0) {
                device_printf(dev, "could not allocate Tx ring %d\n",ac);
                goto fail;
            }
      }

      /* command queue to talk to the card's firmware */
      error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
      if (error != 0) {
            device_printf(dev, "could not allocate command ring\n");
            goto fail;
      }

      /* receive data queue */
      error = wpi_alloc_rx_ring(sc, &sc->rxq);
      if (error != 0) {
            device_printf(dev, "could not allocate Rx ring\n");
            goto fail;
      }

      ifp = sc->sc_ifp = if_alloc(IFT_ETHER);
      if (ifp == NULL) {
            device_printf(dev, "can not if_alloc()\n");
            error = ENOMEM;
            goto fail;
      }

      ic->ic_ifp = ifp;
      ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
      ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
      ic->ic_state = IEEE80211_S_INIT;

      /* set device capabilities */
      ic->ic_caps =
              IEEE80211_C_MONITOR         /* monitor mode supported */
            | IEEE80211_C_TXPMGT          /* tx power management */
            | IEEE80211_C_SHSLOT          /* short slot time supported */
            | IEEE80211_C_SHPREAMBLE      /* short preamble supported */
            | IEEE80211_C_WPA       /* 802.11i */
/* XXX looks like WME is partly supported? */
#if 0
            | IEEE80211_C_IBSS            /* IBSS mode support */
            | IEEE80211_C_BGSCAN          /* capable of bg scanning */
            | IEEE80211_C_WME       /* 802.11e */
            | IEEE80211_C_HOSTAP          /* Host access point mode */
#endif
            ;

      /*
       * Read in the eeprom and also setup the channels for
       * net80211. We don't set the rates as net80211 does this for us
       */
      wpi_read_eeprom(sc);

      if (bootverbose || wpi_debug) {
          device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n", sc->domain);
          device_printf(sc->sc_dev, "Hardware Type: %c\n",
                    sc->type > 1 ? 'B': '?');
          device_printf(sc->sc_dev, "Hardware Revision: %c\n",
                    ((le16toh(sc->rev) & 0xf0) == 0xd0) ? 'D': '?');
          device_printf(sc->sc_dev, "SKU %s support 802.11a\n",
                    supportsa ? "does" : "does not");

          /* XXX hw_config uses the PCIDEV for the Hardware rev. Must check
             what sc->rev really represents - benjsc 20070615 */
      }

      if_initname(ifp, device_get_name(dev), device_get_unit(dev));
      ifp->if_softc = sc;
      ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
      ifp->if_init = wpi_init;
      ifp->if_ioctl = wpi_ioctl;
      ifp->if_start = wpi_start;
      IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
      ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
      IFQ_SET_READY(&ifp->if_snd);
      ieee80211_ifattach(ic);

      /* override default methods */
      ic->ic_node_alloc = wpi_node_alloc;
      ic->ic_newassoc = wpi_newassoc;
      ic->ic_wme.wme_update = wpi_wme_update;
      ic->ic_scan_start = wpi_scan_start;
      ic->ic_scan_end = wpi_scan_end;
      ic->ic_set_channel = wpi_set_channel;
      ic->ic_scan_curchan = wpi_scan_curchan;
      ic->ic_scan_mindwell = wpi_scan_mindwell;

      /* override state transition machine */
      sc->sc_newstate = ic->ic_newstate;
      ic->ic_newstate = wpi_newstate;
      ieee80211_media_init(ic, wpi_media_change, ieee80211_media_status);

      ieee80211_amrr_init(&sc->amrr, ic,
                     IEEE80211_AMRR_MIN_SUCCESS_THRESHOLD,
                     IEEE80211_AMRR_MAX_SUCCESS_THRESHOLD);

      /* whilst ieee80211_ifattach will listen for ieee80211 frames,
       * we also want to listen for the lower level radio frames
       */
      bpfattach2(ifp, DLT_IEEE802_11_RADIO,
          sizeof (struct ieee80211_frame) + sizeof (sc->sc_txtap),
          &sc->sc_drvbpf);

      sc->sc_rxtap_len = sizeof sc->sc_rxtap;
      sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
      sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT);

      sc->sc_txtap_len = sizeof sc->sc_txtap;
      sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
      sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT);

      /*
       * Hook our interrupt after all initialization is complete.
       */
      error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET |INTR_MPSAFE ,
#ifdef WPI_CURRENT
          NULL,
#endif
          wpi_intr, sc, &sc->sc_ih);
      if (error != 0) {
            device_printf(dev, "could not set up interrupt\n");
            goto fail;
      }

      ieee80211_announce(ic);
#ifdef XXX_DEBUG
      ieee80211_announce_channels(ic);
#endif

      return 0;

fail: wpi_detach(dev);
      return ENXIO;
}

static int
wpi_detach(device_t dev)
{
      struct wpi_softc *sc = device_get_softc(dev);
      struct ieee80211com *ic = &sc->sc_ic;
      struct ifnet *ifp = ic->ic_ifp;
      int ac;
      WPI_LOCK_DECL;

      if (ifp != NULL) {
            wpi_stop(sc);
            callout_drain(&sc->watchdog_to);
            callout_drain(&sc->calib_to);
            bpfdetach(ifp);
            ieee80211_ifdetach(ic);
      }

      WPI_LOCK(sc);
      if (sc->txq[0].data_dmat) {
            for (ac = 0; ac < WME_NUM_AC; ac++)
                  wpi_free_tx_ring(sc, &sc->txq[ac]);

            wpi_free_tx_ring(sc, &sc->cmdq);
            wpi_free_rx_ring(sc, &sc->rxq);
            wpi_free_rpool(sc);
            wpi_free_shared(sc);
      }

      if (sc->fw_fp != NULL) {
            wpi_unload_firmware(sc);
      }

      if (sc->fw_dma.tag)
            wpi_free_fwmem(sc);
      WPI_UNLOCK(sc);

      if (sc->irq != NULL) {
            bus_teardown_intr(dev, sc->irq, sc->sc_ih);
            bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
      }

      if (sc->mem != NULL)
            bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);

      if (ifp != NULL)
            if_free(ifp);

      taskqueue_free(sc->sc_tq);
      taskqueue_free(sc->sc_tq2);

      WPI_LOCK_DESTROY(sc);
      WPI_CMD_LOCK_DESTROY(sc);

      return 0;
}

static void
wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
{
      if (error != 0)
            return;

      KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));

      *(bus_addr_t *)arg = segs[0].ds_addr;
}

static int
wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma,
    void **kvap, bus_size_t size, bus_size_t alignment, int flags)
{
      int error;
      int count = 0;

      DPRINTFN(WPI_DEBUG_DMA,
          ("Size: %zd - alignement %zd\n", size, alignment));

      dma->size = size;
      dma->tag = NULL;

again:
      error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), alignment,
          0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
          NULL, NULL, size,
          1, size, flags,
          NULL, NULL, &dma->tag);
      if (error != 0) {
            device_printf(sc->sc_dev,
                "could not create shared page DMA tag\n");
            goto fail;
      }
      error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr,
          flags | BUS_DMA_ZERO, &dma->map);
      if (error != 0) {
            device_printf(sc->sc_dev,
                "could not allocate shared page DMA memory\n");
            goto fail;
      }

      /**
       * Sadly FreeBSD can't always align on a 16k boundary, hence we give it
       * 10 attempts increasing the size of the allocation by 4k each time.
       * This should eventually align us on a 16k boundary at the cost
       * of chewing up dma memory
       */
      if ((((uintptr_t)dma->vaddr) & (alignment-1)) && count < 10) {
            DPRINTFN(WPI_DEBUG_DMA,
                ("Memory Unaligned, trying again: %d\n", count++));
            wpi_dma_contig_free(dma);
            size += 4096;
            goto again;
      }

      DPRINTFN(WPI_DEBUG_DMA,("Memory, allocated & %s Aligned!\n",
                count == 10 ? "FAILED" : ""));
      if (count == 10) {
            device_printf(sc->sc_dev, "Unable to align memory\n");
            error = ENOMEM;
            goto fail;
      }

      error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr,
          size,  wpi_dma_map_addr, &dma->paddr, flags);

      if (error != 0) {
            device_printf(sc->sc_dev,
                "could not load shared page DMA map\n");
            goto fail;
      }

      if (kvap != NULL)
            *kvap = dma->vaddr;

      return 0;

fail:
      wpi_dma_contig_free(dma);
      return error;
}

static void
wpi_dma_contig_free(struct wpi_dma_info *dma)
{
      if (dma->tag) {
            if (dma->map != NULL) {
                  if (dma->paddr == 0) {
                        bus_dmamap_sync(dma->tag, dma->map,
                            BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
                        bus_dmamap_unload(dma->tag, dma->map);
                  }
                  bus_dmamem_free(dma->tag, &dma->vaddr, dma->map);
            }
            bus_dma_tag_destroy(dma->tag);
      }
}

/*
 * Allocate a shared page between host and NIC.
 */
static int
wpi_alloc_shared(struct wpi_softc *sc)
{
      int error;

      error = wpi_dma_contig_alloc(sc, &sc->shared_dma,
          (void **)&sc->shared, sizeof (struct wpi_shared),
          PAGE_SIZE,
          BUS_DMA_NOWAIT);

      if (error != 0) {
            device_printf(sc->sc_dev,
                "could not allocate shared area DMA memory\n");
      }

      return error;
}

static void
wpi_free_shared(struct wpi_softc *sc)
{
      wpi_dma_contig_free(&sc->shared_dma);
}

struct wpi_rbuf *
wpi_alloc_rbuf(struct wpi_softc *sc)
{
      struct wpi_rbuf *rbuf;

      rbuf = SLIST_FIRST(&sc->rxq.freelist);
      if (rbuf == NULL)
            return NULL;
      SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
      return rbuf;
}

/*
 * This is called automatically by the network stack when the mbuf to which our
 * Rx buffer is attached is freed.
 */
static void
wpi_free_rbuf(void *buf, void *arg)
{
      struct wpi_rbuf *rbuf = arg;
      struct wpi_softc *sc = rbuf->sc;
      WPI_LOCK_DECL;

      WPI_LOCK(sc);

      /* put the buffer back in the free list */
      SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);

      WPI_UNLOCK(sc);
}

static int
wpi_alloc_rpool(struct wpi_softc *sc)
{
      struct wpi_rx_ring *ring = &sc->rxq;
      struct wpi_rbuf *rbuf;
      int i, error;

      /* allocate a big chunk of DMA'able memory.. */
      error = wpi_dma_contig_alloc(sc, &ring->buf_dma, NULL,
          WPI_RBUF_COUNT * WPI_RBUF_SIZE, PAGE_SIZE, BUS_DMA_NOWAIT);
      if (error != 0) {
            device_printf(sc->sc_dev,
                "could not allocate Rx buffers DMA memory\n");
            return error;
      }

      /* ..and split it into 3KB chunks */
      SLIST_INIT(&ring->freelist);
      for (i = 0; i < WPI_RBUF_COUNT; i++) {
            rbuf = &ring->rbuf[i];

            rbuf->sc = sc;    /* backpointer for callbacks */
            rbuf->vaddr = ring->buf_dma.vaddr + i * WPI_RBUF_SIZE;
            rbuf->paddr = ring->buf_dma.paddr + i * WPI_RBUF_SIZE;

            SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
      }
      return 0;
}

static void
wpi_free_rpool(struct wpi_softc *sc)
{
      wpi_dma_contig_free(&sc->rxq.buf_dma);
}

static int
wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
{

      struct wpi_rx_data *data;
      struct wpi_rbuf *rbuf;
      int i, error;

      ring->cur = 0;

      error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
            (void **)&ring->desc, WPI_RX_RING_COUNT * sizeof (uint32_t),
            WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);

      if (error != 0) {
          device_printf(sc->sc_dev,
            "could not allocate rx ring DMA memory\n");
          goto fail;
      }

      /*
       * Allocate Rx buffers.
       */
      for (i = 0; i < WPI_RX_RING_COUNT; i++) {
            data = &ring->data[i];

            data->m = m_gethdr(M_DONTWAIT, MT_DATA);
            if (data->m == NULL) {
                  device_printf(sc->sc_dev,
                      "could not allocate rx mbuf\n");
                  error = ENOBUFS;
                  goto fail;
            }

            if ((rbuf = wpi_alloc_rbuf(sc)) == NULL) {
                  m_freem(data->m);
                  data->m = NULL;
                  device_printf(sc->sc_dev,
                      "could not allocate rx buffer\n");
                  error = ENOBUFS;
                  goto fail;
            }

            /* attach RxBuffer to mbuf */
            MEXTADD(data->m, rbuf->vaddr, WPI_RBUF_SIZE,wpi_free_rbuf,
                rbuf,0,EXT_NET_DRV);

            if ((data->m->m_flags & M_EXT) == 0) {
                  m_freem(data->m);
                  data->m = NULL;
                  error = ENOBUFS;
                  goto fail;
            }
            ring->desc[i] = htole32(rbuf->paddr);
      }

      bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
          BUS_DMASYNC_PREWRITE);

      return 0;

fail:
      wpi_free_rx_ring(sc, ring);
      return error;
}

static void
wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
{
      int ntries;

      wpi_mem_lock(sc);

      WPI_WRITE(sc, WPI_RX_CONFIG, 0);

      for (ntries = 0; ntries < 100; ntries++) {
            if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
                  break;
            DELAY(10);
      }

      wpi_mem_unlock(sc);

#ifdef WPI_DEBUG
      if (ntries == 100 && wpi_debug > 0)
            device_printf(sc->sc_dev, "timeout resetting Rx ring\n");
#endif

      ring->cur = 0;
}

static void
wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
{
      int i;

      wpi_dma_contig_free(&ring->desc_dma);

      for (i = 0; i < WPI_RX_RING_COUNT; i++) {
            if (ring->data[i].m != NULL) {
                  m_freem(ring->data[i].m);
                  ring->data[i].m = NULL;
            }
      }
}

static int
wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
      int qid)
{
      struct wpi_tx_data *data;
      int i, error;

      ring->qid = qid;
      ring->count = count;
      ring->queued = 0;
      ring->cur = 0;
      ring->data = NULL;

      error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
            (void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
            WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);

      if (error != 0) {
          device_printf(sc->sc_dev, "could not allocate tx dma memory\n");
          goto fail;
      }

      /* update shared page with ring's base address */
      sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);

      error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
            count * sizeof (struct wpi_tx_cmd), WPI_RING_DMA_ALIGN,
            BUS_DMA_NOWAIT);

      if (error != 0) {
            device_printf(sc->sc_dev,
                "could not allocate tx command DMA memory\n");
            goto fail;
      }

      ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
          M_NOWAIT | M_ZERO);
      if (ring->data == NULL) {
            device_printf(sc->sc_dev,
                "could not allocate tx data slots\n");
            goto fail;
      }

      error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
          BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
          WPI_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL,
          &ring->data_dmat);
      if (error != 0) {
            device_printf(sc->sc_dev, "could not create data DMA tag\n");
            goto fail;
      }

      for (i = 0; i < count; i++) {
            data = &ring->data[i];

            error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
            if (error != 0) {
                  device_printf(sc->sc_dev,
                      "could not create tx buf DMA map\n");
                  goto fail;
            }
            bus_dmamap_sync(ring->data_dmat, data->map,
                BUS_DMASYNC_PREWRITE);
      }

      return 0;

fail: wpi_free_tx_ring(sc, ring);
      return error;
}

static void
wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
{
      struct wpi_tx_data *data;
      int i, ntries;

      wpi_mem_lock(sc);

      WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
      for (ntries = 0; ntries < 100; ntries++) {
            if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
                  break;
            DELAY(10);
      }
#ifdef WPI_DEBUG
      if (ntries == 100 && wpi_debug > 0) {
            device_printf(sc->sc_dev, "timeout resetting Tx ring %d\n",
                ring->qid);
      }
#endif
      wpi_mem_unlock(sc);

      for (i = 0; i < ring->count; i++) {
            data = &ring->data[i];

            if (data->m != NULL) {
                  bus_dmamap_unload(ring->data_dmat, data->map);
                  m_freem(data->m);
                  data->m = NULL;
            }
      }

      ring->queued = 0;
      ring->cur = 0;
}

static void
wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
{
      struct wpi_tx_data *data;
      int i;

      wpi_dma_contig_free(&ring->desc_dma);
      wpi_dma_contig_free(&ring->cmd_dma);

      if (ring->data != NULL) {
            for (i = 0; i < ring->count; i++) {
                  data = &ring->data[i];

                  if (data->m != NULL) {
                        bus_dmamap_sync(ring->data_dmat, data->map,
                            BUS_DMASYNC_POSTWRITE);
                        bus_dmamap_unload(ring->data_dmat, data->map);
                        m_freem(data->m);
                        data->m = NULL;
                  }
            }
            free(ring->data, M_DEVBUF);
      }

      if (ring->data_dmat != NULL)
            bus_dma_tag_destroy(ring->data_dmat);
}

static int
wpi_shutdown(device_t dev)
{
      struct wpi_softc *sc = device_get_softc(dev);
      WPI_LOCK_DECL;

      WPI_LOCK(sc);
      wpi_stop_locked(sc);
      wpi_unload_firmware(sc);
      WPI_UNLOCK(sc);

      return 0;
}

static int
wpi_suspend(device_t dev)
{
      struct wpi_softc *sc = device_get_softc(dev);

      wpi_stop(sc);
      return 0;
}

static int
wpi_resume(device_t dev)
{
      struct wpi_softc *sc = device_get_softc(dev);
      struct ifnet *ifp = sc->sc_ic.ic_ifp;

      pci_write_config(dev, 0x41, 0, 1);

      if (ifp->if_flags & IFF_UP) {
            wpi_init(ifp->if_softc);
            if (ifp->if_drv_flags & IFF_DRV_RUNNING)
                  wpi_start(ifp);
      }
      return 0;
}

/* ARGSUSED */
static struct ieee80211_node *
wpi_node_alloc(struct ieee80211_node_table *ic)
{
      struct wpi_node *wn;

      wn = malloc(sizeof (struct wpi_node), M_80211_NODE, M_NOWAIT |M_ZERO);

      return &wn->ni;
}

static int
wpi_media_change(struct ifnet *ifp)
{
      int error;

      error = ieee80211_media_change(ifp);
      if (error != ENETRESET)
            return error;

      if ((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
            wpi_init(ifp->if_softc);

      return 0;
}

/**
 * Called by net80211 when ever there is a change to 80211 state machine
 */
static int
wpi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
{
      struct ifnet *ifp = ic->ic_ifp;
      struct wpi_softc *sc = ifp->if_softc;
      struct ieee80211_node *ni;
      int error;
      WPI_LOCK_DECL;

      WPI_LOCK(sc);
      callout_stop(&sc->calib_to);
      WPI_UNLOCK(sc);

      switch (nstate) {
      case IEEE80211_S_SCAN:
            DPRINTF(("NEWSTATE:SCAN\n"));
            /* Scanning is handled in net80211 via the scan_start,
             * scan_end, scan_curchan functions. Hence all we do when
             * changing to the SCAN state is update the leds
             */

            /* make the link LED blink while we're scanning */
            wpi_set_led(sc, WPI_LED_LINK, 20, 2);
            break;

      case IEEE80211_S_ASSOC:
            DPRINTF(("NEWSTATE:ASSOC\n"));
            if (ic->ic_state != IEEE80211_S_RUN)
              break;
            /* FALLTHROUGH */

      case IEEE80211_S_AUTH:
            DPRINTF(("NEWSTATE:AUTH\n"));
            sc->flags |= WPI_FLAG_AUTH;
            sc->config.associd = 0;
            sc->config.filter &= ~htole32(WPI_FILTER_BSS);
            wpi_queue_cmd(sc,WPI_AUTH);
            DPRINTF(("END AUTH\n"));
            break;

      case IEEE80211_S_RUN:
            DPRINTF(("NEWSTATE:RUN\n"));
            if (ic->ic_opmode == IEEE80211_M_MONITOR) {
                  /* link LED blinks while monitoring */
                  wpi_set_led(sc, WPI_LED_LINK, 5, 5);
                  break;
            }

#if 0
            if (ic->ic_opmode != IEEE80211_M_STA) {
                  (void) wpi_auth(sc);    /* XXX */
                  wpi_setup_beacon(sc, ic->ic_bss);
            }
#endif

            ni = ic->ic_bss;
            wpi_enable_tsf(sc, ni);

            /* update adapter's configuration */
            sc->config.associd = htole16(ni->ni_associd & ~0xc000);
            /* short preamble/slot time are negotiated when associating */
            sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
                  WPI_CONFIG_SHSLOT);
            if (ic->ic_flags & IEEE80211_F_SHSLOT)
                  sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
            if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
                  sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
            sc->config.filter |= htole32(WPI_FILTER_BSS);
#if 0
            if (ic->ic_opmode != IEEE80211_M_STA)
                  sc->config.filter |= htole32(WPI_FILTER_BEACON);
#endif

/* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */

            DPRINTF(("config chan %d flags %x\n", sc->config.chan,
                sc->config.flags));
            error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
                  sizeof (struct wpi_config), 1);
            if (error != 0) {
                  device_printf(sc->sc_dev,
                      "could not update configuration\n");
                  return error;
            }

            if ((error = wpi_set_txpower(sc, ic->ic_bss->ni_chan, 1)) != 0) {
                  device_printf(sc->sc_dev,
                      "could set txpower\n");
                  return error;
            }

            if (ic->ic_opmode == IEEE80211_M_STA) {
                  /* fake a join to init the tx rate */
                  wpi_newassoc(ic->ic_bss, 1);
            }

            /* start automatic rate control timer */
            callout_reset(&sc->calib_to, hz/2, wpi_calib_timeout, sc);

            /* link LED always on while associated */
            wpi_set_led(sc, WPI_LED_LINK, 0, 1);
            break;

      case IEEE80211_S_INIT:
            DPRINTF(("NEWSTATE:INIT\n"));
            break;

      default:
            break;
      }

      return (*sc->sc_newstate)(ic, nstate, arg);
}

/*
 * Grab exclusive access to NIC memory.
 */
static void
wpi_mem_lock(struct wpi_softc *sc)
{
      int ntries;
      uint32_t tmp;

      tmp = WPI_READ(sc, WPI_GPIO_CTL);
      WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);

      /* spin until we actually get the lock */
      for (ntries = 0; ntries < 100; ntries++) {
            if ((WPI_READ(sc, WPI_GPIO_CTL) &
                  (WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
                  break;
            DELAY(10);
      }
      if (ntries == 100)
            device_printf(sc->sc_dev, "could not lock memory\n");
}

/*
 * Release lock on NIC memory.
 */
static void
wpi_mem_unlock(struct wpi_softc *sc)
{
      uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
      WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
}

static uint32_t
wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
{
      WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
      return WPI_READ(sc, WPI_READ_MEM_DATA);
}

static void
wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
{
      WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
      WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
}

static void
wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
    const uint32_t *data, int wlen)
{
      for (; wlen > 0; wlen--, data++, addr+=4)
            wpi_mem_write(sc, addr, *data);
}

/*
 * Read data from the EEPROM.  We access EEPROM through the MAC instead of
 * using the traditional bit-bang method. Data is read up until len bytes have
 * been obtained.
 */
static uint16_t
wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
{
      int ntries;
      uint32_t val;
      uint8_t *out = data;

      wpi_mem_lock(sc);

      for (; len > 0; len -= 2, addr++) {
            WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);

            for (ntries = 0; ntries < 10; ntries++) {
                  if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & WPI_EEPROM_READY)
                        break;
                  DELAY(5);
            }

            if (ntries == 10) {
                  device_printf(sc->sc_dev, "could not read EEPROM\n");
                  return ETIMEDOUT;
            }

            *out++= val >> 16;
            if (len > 1)
                  *out ++= val >> 24;
      }

      wpi_mem_unlock(sc);

      return 0;
}

/*
 * The firmware text and data segments are transferred to the NIC using DMA.
 * The driver just copies the firmware into DMA-safe memory and tells the NIC
 * where to find it.  Once the NIC has copied the firmware into its internal
 * memory, we can free our local copy in the driver.
 */
static int
wpi_load_microcode(struct wpi_softc *sc, const uint8_t *fw, int size)
{
      int error, ntries;

      DPRINTFN(WPI_DEBUG_HW,("Loading microcode  size 0x%x\n", size));

      size /= sizeof(uint32_t);

      wpi_mem_lock(sc);

      wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
          (const uint32_t *)fw, size);

      wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
      wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
      wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);

      /* run microcode */
      wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);

      /* wait while the adapter is busy copying the firmware */
      for (error = 0, ntries = 0; ntries < 1000; ntries++) {
            uint32_t status = WPI_READ(sc, WPI_TX_STATUS);
            DPRINTFN(WPI_DEBUG_HW,
                ("firmware status=0x%x, val=0x%x, result=0x%x\n", status,
                 WPI_TX_IDLE(6), status & WPI_TX_IDLE(6)));
            if (status & WPI_TX_IDLE(6)) {
                  DPRINTFN(WPI_DEBUG_HW,
                      ("Status Match! - ntries = %d\n", ntries));
                  break;
            }
            DELAY(10);
      }
      if (ntries == 1000) {
            device_printf(sc->sc_dev, "timeout transferring firmware\n");
            error = ETIMEDOUT;
      }

      /* start the microcode executing */
      wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);

      wpi_mem_unlock(sc);

      return (error);
}

static void
wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
      struct wpi_rx_data *data)
{
      struct ieee80211com *ic = &sc->sc_ic;
      struct ifnet *ifp = ic->ic_ifp;
      struct wpi_rx_ring *ring = &sc->rxq;
      struct wpi_rx_stat *stat;
      struct wpi_rx_head *head;
      struct wpi_rx_tail *tail;
      struct wpi_rbuf *rbuf;
      struct ieee80211_frame *wh;
      struct ieee80211_node *ni;
      struct mbuf *m, *mnew;
      WPI_LOCK_DECL;

      stat = (struct wpi_rx_stat *)(desc + 1);

      if (stat->len > WPI_STAT_MAXLEN) {
            device_printf(sc->sc_dev, "invalid rx statistic header\n");
            ifp->if_ierrors++;
            return;
      }

      head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
      tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + le16toh(head->len));

      DPRINTFN(WPI_DEBUG_RX, ("rx intr: idx=%d len=%d stat len=%d rssi=%d "
          "rate=%x chan=%d tstamp=%ju\n", ring->cur, le32toh(desc->len),
          le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
          (uintmax_t)le64toh(tail->tstamp)));

      m = data->m;

      /* finalize mbuf */
      m->m_pkthdr.rcvif = ifp;
      m->m_data = (caddr_t)(head + 1);
      m->m_pkthdr.len = m->m_len = le16toh(head->len);

      if ((rbuf = SLIST_FIRST(&sc->rxq.freelist)) != NULL) {
            mnew = m_gethdr(M_DONTWAIT,MT_DATA);
            if (mnew == NULL) {
                  ifp->if_ierrors++;
                  return;
            }

            /* attach Rx buffer to mbuf */
            MEXTADD(mnew,rbuf->vaddr,WPI_RBUF_SIZE, wpi_free_rbuf, rbuf, 0,
                EXT_NET_DRV);
            SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
            data->m = mnew;

            /* update Rx descriptor */
            ring->desc[ring->cur] = htole32(rbuf->paddr);
      } else {
            /* no free rbufs, copy frame */
            m = m_dup(m, M_DONTWAIT);
            if (m == NULL) {
                  /* no free mbufs either, drop frame */
                  ifp->if_ierrors++;
                  return;
            }
      }

#ifndef WPI_CURRENT
      if (sc->sc_drvbpf != NULL) {
#else
      if (bpf_peers_present(sc->sc_drvbpf)) {
#endif
            struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;

            tap->wr_flags = 0;
            tap->wr_chan_freq =
                  htole16(ic->ic_channels[head->chan].ic_freq);
            tap->wr_chan_flags =
                  htole16(ic->ic_channels[head->chan].ic_flags);
            tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
            tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
            tap->wr_tsft = tail->tstamp;
            tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
            switch (head->rate) {
            /* CCK rates */
            case  10: tap->wr_rate =   2; break;
            case  20: tap->wr_rate =   4; break;
            case  55: tap->wr_rate =  11; break;
            case 110: tap->wr_rate =  22; break;
            /* OFDM rates */
            case 0xd: tap->wr_rate =  12; break;
            case 0xf: tap->wr_rate =  18; break;
            case 0x5: tap->wr_rate =  24; break;
            case 0x7: tap->wr_rate =  36; break;
            case 0x9: tap->wr_rate =  48; break;
            case 0xb: tap->wr_rate =  72; break;
            case 0x1: tap->wr_rate =  96; break;
            case 0x3: tap->wr_rate = 108; break;
            /* unknown rate: should not happen */
            default:  tap->wr_rate =   0;
            }
            if (le16toh(head->flags) & 0x4)
                  tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;

            bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
      }

      wh = mtod(m, struct ieee80211_frame *);
      WPI_UNLOCK(sc);

      /* XXX frame length > sizeof(struct ieee80211_frame_min)? */
      /* grab a reference to the source node */
      ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);

      /* send the frame to the 802.11 layer */
      ieee80211_input(ic, m, ni, stat->rssi, 0, 0);

      /* release node reference */
      ieee80211_free_node(ni);
      WPI_LOCK(sc);
}

static void
wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
{
      struct ifnet *ifp = sc->sc_ic.ic_ifp;
      struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
      struct wpi_tx_data *txdata = &ring->data[desc->idx];
      struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
      struct wpi_node *wn = (struct wpi_node *)txdata->ni;

      DPRINTFN(WPI_DEBUG_TX, ("tx done: qid=%d idx=%d retries=%d nkill=%d "
          "rate=%x duration=%d status=%x\n", desc->qid, desc->idx,
          stat->ntries, stat->nkill, stat->rate, le32toh(stat->duration),
          le32toh(stat->status)));

      /*
       * Update rate control statistics for the node.
       * XXX we should not count mgmt frames since they're always sent at
       * the lowest available bit-rate.
       * XXX frames w/o ACK shouldn't be used either
       */
      wn->amn.amn_txcnt++;
      if (stat->ntries > 0) {
            DPRINTFN(3, ("%d retries\n", stat->ntries));
            wn->amn.amn_retrycnt++;
      }

      /* XXX oerrors should only count errors !maxtries */
      if ((le32toh(stat->status) & 0xff) != 1)
            ifp->if_oerrors++;
      else
            ifp->if_opackets++;

      bus_dmamap_sync(ring->data_dmat, txdata->map, BUS_DMASYNC_POSTWRITE);
      bus_dmamap_unload(ring->data_dmat, txdata->map);
      /* XXX handle M_TXCB? */
      m_freem(txdata->m);
      txdata->m = NULL;
      ieee80211_free_node(txdata->ni);
      txdata->ni = NULL;

      ring->queued--;

      sc->sc_tx_timer = 0;
      sc->watchdog_cnt = 0;
      callout_stop(&sc->watchdog_to);
      ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
      wpi_start(ifp);
}

static void
wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
{
      struct wpi_tx_ring *ring = &sc->cmdq;
      struct wpi_tx_data *data;

      DPRINTFN(WPI_DEBUG_CMD, ("cmd notification qid=%x idx=%d flags=%x "
                         "type=%s len=%d\n", desc->qid, desc->idx,
                         desc->flags, wpi_cmd_str(desc->type),
                         le32toh(desc->len)));

      if ((desc->qid & 7) != 4)
            return;     /* not a command ack */

      data = &ring->data[desc->idx];

      /* if the command was mapped in a mbuf, free it */
      if (data->m != NULL) {
            bus_dmamap_unload(ring->data_dmat, data->map);
            m_freem(data->m);
            data->m = NULL;
      }

      sc->flags &= ~WPI_FLAG_BUSY;
      wakeup(&ring->cmd[desc->idx]);
}

static void
wpi_notif_intr(struct wpi_softc *sc)
{
      struct ieee80211com *ic = &sc->sc_ic;
      struct wpi_rx_desc *desc;
      struct wpi_rx_data *data;
      uint32_t hw;

      hw = le32toh(sc->shared->next);
      while (sc->rxq.cur != hw) {
            data = &sc->rxq.data[sc->rxq.cur];
            desc = (void *)data->m->m_ext.ext_buf;

            DPRINTFN(WPI_DEBUG_NOTIFY,
                   ("notify qid=%x idx=%d flags=%x type=%d len=%d\n",
                    desc->qid,
                    desc->idx,
                    desc->flags,
                    desc->type,
                    le32toh(desc->len)));

            if (!(desc->qid & 0x80))      /* reply to a command */
                  wpi_cmd_intr(sc, desc);

            switch (desc->type) {
            case WPI_RX_DONE:
                  /* a 802.11 frame was received */
                  wpi_rx_intr(sc, desc, data);
                  break;

            case WPI_TX_DONE:
                  /* a 802.11 frame has been transmitted */
                  wpi_tx_intr(sc, desc);
                  break;

            case WPI_UC_READY:
            {
                  struct wpi_ucode_info *uc =
                        (struct wpi_ucode_info *)(desc + 1);

                  /* the microcontroller is ready */
                  DPRINTF(("microcode alive notification version %x "
                        "alive %x\n", le32toh(uc->version),
                        le32toh(uc->valid)));

                  if (le32toh(uc->valid) != 1) {
                        device_printf(sc->sc_dev,
                            "microcontroller initialization failed\n");
                        wpi_stop_locked(sc);
                  }
                  break;
            }
            case WPI_STATE_CHANGED:
            {
                  uint32_t *status = (uint32_t *)(desc + 1);

                  /* enabled/disabled notification */
                  DPRINTF(("state changed to %x\n", le32toh(*status)));

                  if (le32toh(*status) & 1) {
                        device_printf(sc->sc_dev,
                            "Radio transmitter is switched off\n");
                        sc->flags |= WPI_FLAG_HW_RADIO_OFF;
                        break;
                  }
                  sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
                  break;
            }
            case WPI_START_SCAN:
            {
                  struct wpi_start_scan *scan =
                        (struct wpi_start_scan *)(desc + 1);

                  DPRINTFN(WPI_DEBUG_SCANNING,
                         ("scanning channel %d status %x\n",
                      scan->chan, le32toh(scan->status)));

                  /* fix current channel */
                  ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
                  break;
            }
            case WPI_STOP_SCAN:
            {
                  struct wpi_stop_scan *scan =
                        (struct wpi_stop_scan *)(desc + 1);

                  DPRINTFN(WPI_DEBUG_SCANNING,
                      ("scan finished nchan=%d status=%d chan=%d\n",
                       scan->nchan, scan->status, scan->chan));

                  wpi_queue_cmd(sc, WPI_SCAN_NEXT);
                  break;
            }
            case WPI_MISSED_BEACON:
            {
                struct wpi_missed_beacon *beacon =
                        (struct wpi_missed_beacon *)(desc + 1);

                    if (le32toh(beacon->consecutive) >= ic->ic_bmissthreshold) {
                  DPRINTF(("Beacon miss: %u >= %u\n",
                         le32toh(beacon->consecutive),
                         ic->ic_bmissthreshold));
                  ieee80211_beacon_miss(ic);
                }
            }
            }

            sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
      }

      /* tell the firmware what we have processed */
      hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
      WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);

}

static void
wpi_intr(void *arg)
{
      struct wpi_softc *sc = arg;
      uint32_t r;
      WPI_LOCK_DECL;

      WPI_LOCK(sc);

      r = WPI_READ(sc, WPI_INTR);
      if (r == 0 || r == 0xffffffff) {
            WPI_UNLOCK(sc);
            return;
      }

      /* disable interrupts */
      WPI_WRITE(sc, WPI_MASK, 0);
      /* ack interrupts */
      WPI_WRITE(sc, WPI_INTR, r);

      if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
            device_printf(sc->sc_dev, "fatal firmware error\n");
            DPRINTFN(6,("(%s)\n", (r & WPI_SW_ERROR) ? "(Software Error)" :
                        "(Hardware Error)"));
            taskqueue_enqueue(sc->sc_tq2, &sc->sc_restarttask);
            sc->flags &= ~WPI_FLAG_BUSY;
            WPI_UNLOCK(sc);
            return;
      }

      if (r & WPI_RX_INTR)
            wpi_notif_intr(sc);

      if (r & WPI_ALIVE_INTR) /* firmware initialized */
            wakeup(sc);

      /* re-enable interrupts */
      if (sc->sc_ifp->if_flags & IFF_UP)
            WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);

      WPI_UNLOCK(sc);
}

static uint8_t
wpi_plcp_signal(int rate)
{
      switch (rate) {
      /* CCK rates (returned values are device-dependent) */
      case 2:           return 10;
      case 4:           return 20;
      case 11:    return 55;
      case 22:    return 110;

      /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
      /* R1-R4 (ral/ural is R4-R1) */
      case 12:    return 0xd;
      case 18:    return 0xf;
      case 24:    return 0x5;
      case 36:    return 0x7;
      case 48:    return 0x9;
      case 72:    return 0xb;
      case 96:    return 0x1;
      case 108:   return 0x3;

      /* unsupported rates (should not get there) */
      default:    return 0;
      }
}

/* quickly determine if a given rate is CCK or OFDM */
#define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)

/*
 * Construct the data packet for a transmit buffer and acutally put
 * the buffer onto the transmit ring, kicking the card to process the
 * the buffer.
 */
static int
wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
      int ac)
{
      struct ieee80211com *ic = &sc->sc_ic;
      struct wpi_tx_ring *ring = &sc->txq[ac];
      struct wpi_tx_desc *desc;
      struct wpi_tx_data *data;
      struct wpi_tx_cmd *cmd;
      struct wpi_cmd_data *tx;
      struct ieee80211_frame *wh;
      struct ieee80211_key *k;
      const struct chanAccParams *cap;
      struct mbuf *mnew;
      int i, error, nsegs, rate, hdrlen, noack = 0;
      bus_dma_segment_t segs[WPI_MAX_SCATTER];

      desc = &ring->desc[ring->cur];
      data = &ring->data[ring->cur];

      wh = mtod(m0, struct ieee80211_frame *);

      if (IEEE80211_QOS_HAS_SEQ(wh)) {
            hdrlen = sizeof (struct ieee80211_qosframe);
            cap = &ic->ic_wme.wme_chanParams;
            noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
      } else
            hdrlen = sizeof (struct ieee80211_frame);

      if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
            if ((k = ieee80211_crypto_encap(ic, ni, m0)) == NULL) {
                  m_freem(m0);
                  return ENOBUFS;
            }

            /* packet header may have moved, reset our local pointer */
            wh = mtod(m0, struct ieee80211_frame *);
      }

      /* pickup a rate */
      if (IEEE80211_IS_MULTICAST(wh->i_addr1)||
          ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
            IEEE80211_FC0_TYPE_MGT)) {
            /*
             * mgmt/multicast frames are sent at the lowest available
             * bit-rate
             */
            rate = ni->ni_rates.rs_rates[0];
      } else {
            if (ic->ic_fixed_rate != -1) {
                  rate = ic->ic_sup_rates[ic->ic_curmode].
                        rs_rates[ic->ic_fixed_rate];
            } else
                  rate = ni->ni_rates.rs_rates[ni->ni_txrate];
      }
      rate &= IEEE80211_RATE_VAL;

#ifndef WPI_CURRENT
      if (sc->sc_drvbpf != NULL) {
#else
      if (bpf_peers_present(sc->sc_drvbpf)) {
#endif

            struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;

            tap->wt_flags = 0;
            tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
            tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
            tap->wt_rate = rate;
            tap->wt_hwqueue = ac;
            if (wh->i_fc[1] & IEEE80211_FC1_WEP)
                  tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;

            bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
      }

      cmd = &ring->cmd[ring->cur];
      cmd->code = WPI_CMD_TX_DATA;
      cmd->flags = 0;
      cmd->qid = ring->qid;
      cmd->idx = ring->cur;

      tx = (struct wpi_cmd_data *)cmd->data;
      tx->flags = 0;

      if (!noack && !IEEE80211_IS_MULTICAST(wh->i_addr1)) {
            tx->flags |= htole32(WPI_TX_NEED_ACK);
      } else if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold) {
            tx->flags |= htole32(WPI_TX_NEED_RTS | WPI_TX_FULL_TXOP);
      }

      tx->flags |= htole32(WPI_TX_AUTO_SEQ);

      tx->id = IEEE80211_IS_MULTICAST(wh->i_addr1) ? WPI_ID_BROADCAST :
        WPI_ID_BSS;

      if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
            IEEE80211_FC0_TYPE_MGT) {
            uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
            /* tell h/w to set timestamp in probe responses */
            if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
                      tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);

            if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
                      subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
                  tx->timeout = htole16(3);
            else
                  tx->timeout = htole16(2);
      } else
            tx->timeout = htole16(0);

      tx->rate = wpi_plcp_signal(rate);

      /* be very persistant at sending frames out */
      tx->rts_ntries = 7;
      tx->data_ntries = 15;

      tx->ofdm_mask = 0xff;
      tx->cck_mask = 0x0f;
      tx->lifetime = htole32(WPI_LIFETIME_INFINITE);

      tx->len = htole16(m0->m_pkthdr.len);

      /* save and trim IEEE802.11 header */
      m_copydata(m0, 0, hdrlen, (caddr_t)&tx->wh);
      m_adj(m0, hdrlen);

      error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m0, segs,
          &nsegs, BUS_DMA_NOWAIT);
      if (error != 0 && error != EFBIG) {
            device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
                error);
            m_freem(m0);
            return error;
      }
      if (error != 0) {
            /* XXX use ath_defrag */
            mnew = m_defrag(m0, M_DONTWAIT);
            if (mnew == NULL) {
                  device_printf(sc->sc_dev,
                      "could not defragment mbuf\n");
                  m_freem(m0);
                  return ENOBUFS;
            }
            m0 = mnew;

            error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map,
                m0, segs, &nsegs, BUS_DMA_NOWAIT);
            if (error != 0) {
                  device_printf(sc->sc_dev,
                      "could not map mbuf (error %d)\n", error);
                  m_freem(m0);
                  return error;
            }
      }

      data->m = m0;
      data->ni = ni;

      DPRINTFN(WPI_DEBUG_TX, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
          ring->qid, ring->cur, m0->m_pkthdr.len, nsegs));

      /* first scatter/gather segment is used by the tx data command */
      desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
          (1 + nsegs) << 24);
      desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
          ring->cur * sizeof (struct wpi_tx_cmd));
      desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_data));
      for (i = 1; i <= nsegs; i++) {
            desc->segs[i].addr = htole32(segs[i - 1].ds_addr);
            desc->segs[i].len  = htole32(segs[i - 1].ds_len);
      }

      bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
      bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
          BUS_DMASYNC_PREWRITE);

      ring->queued++;

      /* kick ring */
      ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
      WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);

      return 0;
}

/**
 * Process data waiting to be sent on the IFNET output queue
 */
static void
wpi_start(struct ifnet *ifp)
{
      struct wpi_softc *sc = ifp->if_softc;
      struct ieee80211com *ic = &sc->sc_ic;
      struct ieee80211_node *ni;
      struct ether_header *eh;
      struct mbuf *m0;
      int ac;
      WPI_LOCK_DECL;

      WPI_LOCK(sc);

      for (;;) {
            IF_POLL(&ic->ic_mgtq, m0);
            if (m0 != NULL) {
                  IF_DEQUEUE(&ic->ic_mgtq, m0);

                  ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
                  m0->m_pkthdr.rcvif = NULL;

                  /* management frames go into ring 0 */
                  if (sc->txq[0].queued > sc->txq[0].count - 8) {
                        ifp->if_oerrors++;
                        continue;
                  }

                  if (wpi_tx_data(sc, m0, ni, 0) != 0) {
                        ifp->if_oerrors++;
                        break;
                  }
            } else {
                  if (ic->ic_state != IEEE80211_S_RUN)
                        break;

                  IFQ_POLL(&ifp->if_snd, m0);
                  if (m0 == NULL)
                        break;

                  /*
                   * Cancel any background scan.
                   */
                  if (ic->ic_flags & IEEE80211_F_SCAN)
                        ieee80211_cancel_scan(ic);

                  if (m0->m_len < sizeof (*eh) &&
                      (m0 = m_pullup(m0, sizeof (*eh))) != NULL) {
                        ifp->if_oerrors++;
                        continue;
                  }
                  eh = mtod(m0, struct ether_header *);
                  ni = ieee80211_find_txnode(ic, eh->ether_dhost);
                  if (ni == NULL) {
                        m_freem(m0);
                        ifp->if_oerrors++;
                        continue;
                  }

                  /* classify mbuf so we can find which tx ring to use */
                  if (ieee80211_classify(ic, m0, ni) != 0) {
                        m_freem(m0);
                        ieee80211_free_node(ni);
                        ifp->if_oerrors++;
                        continue;
                  }

                  /* no QoS encapsulation for EAPOL frames */
                  ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
                      M_WME_GETAC(m0) : WME_AC_BE;

                  if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
                        /* there is no place left in this ring */
                        IFQ_DRV_PREPEND(&ifp->if_snd, m0);
                        ifp->if_drv_flags |= IFF_DRV_OACTIVE;
                        break;
                  }

                  IFQ_DRV_DEQUEUE(&ifp->if_snd, m0);
                  BPF_MTAP(ifp, m0);

                  m0 = ieee80211_encap(ic, m0, ni);
                  if (m0 == NULL) {
                        ieee80211_free_node(ni);
                        ifp->if_oerrors++;
                        continue;
                  }

#ifndef WPI_CURRENT
                  if (ic->ic_rawbpf != NULL)
#else
                  if (bpf_peers_present(ic->ic_rawbpf))
#endif
                        bpf_mtap(ic->ic_rawbpf, m0);

                  if (wpi_tx_data(sc, m0, ni, ac) != 0) {
                        ieee80211_free_node(ni);
                        ifp->if_oerrors++;
                        break;
                  }
            }

            sc->sc_tx_timer = 5;
            sc->watchdog_cnt = 5;
            ic->ic_lastdata = ticks;
      }

      WPI_UNLOCK(sc);
}

static void
wpi_watchdog(struct ifnet *ifp)
{
      struct wpi_softc *sc = ifp->if_softc;
      WPI_LOCK_DECL;

      WPI_LOCK(sc);

      DPRINTFN(WPI_DEBUG_WATCHDOG, ("watchdog_cnt: %d\n", sc->watchdog_cnt));

      if (sc->watchdog_cnt == 0 || --sc->watchdog_cnt)
            goto done;

      if (--sc->sc_tx_timer != 0) {
            device_printf(sc->sc_dev,"device timeout\n");
            ifp->if_oerrors++;
            taskqueue_enqueue(sc->sc_tq2, &sc->sc_restarttask);
      }
done:
      WPI_UNLOCK(sc);
}

static int
wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
{
      struct wpi_softc *sc = ifp->if_softc;
      struct ieee80211com *ic = &sc->sc_ic;
      int error = 0;
      WPI_LOCK_DECL;

      WPI_LOCK(sc);

      switch (cmd) {
      case SIOCSIFFLAGS:
            if ((ifp->if_flags & IFF_UP)) {
                  if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
                        wpi_init(sc);
            } else if (ifp->if_drv_flags & IFF_DRV_RUNNING)
                  wpi_stop_locked(sc);
            break;
      default:
            WPI_UNLOCK(sc);
            error = ieee80211_ioctl(ic, cmd, data);
            WPI_LOCK(sc);
      }

      if (error == ENETRESET) {
            if ((ifp->if_flags & IFF_UP) &&
                (ifp->if_drv_flags & IFF_DRV_RUNNING) &&
                ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
                  wpi_init(sc);
            error = 0;
      }

      WPI_UNLOCK(sc);

      return error;
}

/*
 * Extract various information from EEPROM.
 */
static void
wpi_read_eeprom(struct wpi_softc *sc)
{
      struct ieee80211com *ic = &sc->sc_ic;
      int i;

      /* read the hardware capabilities, revision and SKU type */
      wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap,1);
      wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,2);
      wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);

      /* read the regulatory domain */
      wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain, 4);

      /* read in the hw MAC address */
      wpi_read_prom_data(sc, WPI_EEPROM_MAC, ic->ic_myaddr, 6);

      /* read the list of authorized channels */
      for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
            wpi_read_eeprom_channels(sc,i);

      /* read the power level calibration info for each group */
      for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
            wpi_read_eeprom_group(sc,i);
}

/*
 * Send a command to the firmware.
 */
static int
wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
{
      struct wpi_tx_ring *ring = &sc->cmdq;
      struct wpi_tx_desc *desc;
      struct wpi_tx_cmd *cmd;

#ifdef WPI_DEBUG
      if (!async) {
            WPI_LOCK_ASSERT(sc);
      }
#endif

      DPRINTFN(WPI_DEBUG_CMD,("wpi_cmd %d size %d async %d\n", code, size,
                async));

      if (sc->flags & WPI_FLAG_BUSY) {
            device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n",
                __func__, code);
            return EAGAIN;
      }
      sc->flags|= WPI_FLAG_BUSY;

      KASSERT(size <= sizeof cmd->data, ("command %d too large: %d bytes",
          code, size));

      desc = &ring->desc[ring->cur];
      cmd = &ring->cmd[ring->cur];

      cmd->code = code;
      cmd->flags = 0;
      cmd->qid = ring->qid;
      cmd->idx = ring->cur;
      memcpy(cmd->data, buf, size);

      desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
      desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
            ring->cur * sizeof (struct wpi_tx_cmd));
      desc->segs[0].len  = htole32(4 + size);

      /* kick cmd ring */
      ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
      WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);

      if (async) {
            sc->flags &= ~ WPI_FLAG_BUSY;
            return 0;
      }

      return msleep(cmd, &sc->sc_mtx, PCATCH, "wpicmd", hz);
}

static int
wpi_wme_update(struct ieee80211com *ic)
{
#define WPI_EXP2(v)     htole16((1 << (v)) - 1)
#define WPI_USEC(v)     htole16(IEEE80211_TXOP_TO_US(v))
      struct wpi_softc *sc = ic->ic_ifp->if_softc;
      const struct wmeParams *wmep;
      struct wpi_wme_setup wme;
      int ac;

      /* don't override default WME values if WME is not actually enabled */
      if (!(ic->ic_flags & IEEE80211_F_WME))
            return 0;

      wme.flags = 0;
      for (ac = 0; ac < WME_NUM_AC; ac++) {
            wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
            wme.ac[ac].aifsn = wmep->wmep_aifsn;
            wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
            wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
            wme.ac[ac].txop  = WPI_USEC(wmep->wmep_txopLimit);

            DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
                "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
                wme.ac[ac].cwmax, wme.ac[ac].txop));
      }

      return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
#undef WPI_USEC
#undef WPI_EXP2
}

/*
 * Configure h/w multi-rate retries.
 */
static int
wpi_mrr_setup(struct wpi_softc *sc)
{
      struct ieee80211com *ic = &sc->sc_ic;
      struct wpi_mrr_setup mrr;
      int i, error;

      memset(&mrr, 0, sizeof (struct wpi_mrr_setup));

      /* CCK rates (not used with 802.11a) */
      for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
            mrr.rates[i].flags = 0;
            mrr.rates[i].signal = wpi_ridx_to_plcp[i];
            /* fallback to the immediate lower CCK rate (if any) */
            mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
            /* try one time at this rate before falling back to "next" */
            mrr.rates[i].ntries = 1;
      }

      /* OFDM rates (not used with 802.11b) */
      for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
            mrr.rates[i].flags = 0;
            mrr.rates[i].signal = wpi_ridx_to_plcp[i];
            /* fallback to the immediate lower OFDM rate (if any) */
            /* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
            mrr.rates[i].next = (i == WPI_OFDM6) ?
                ((ic->ic_curmode == IEEE80211_MODE_11A) ?
                  WPI_OFDM6 : WPI_CCK2) :
                i - 1;
            /* try one time at this rate before falling back to "next" */
            mrr.rates[i].ntries = 1;
      }

      /* setup MRR for control frames */
      mrr.which = htole32(WPI_MRR_CTL);
      error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
      if (error != 0) {
            device_printf(sc->sc_dev,
                "could not setup MRR for control frames\n");
            return error;
      }

      /* setup MRR for data frames */
      mrr.which = htole32(WPI_MRR_DATA);
      error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
      if (error != 0) {
            device_printf(sc->sc_dev,
                "could not setup MRR for data frames\n");
            return error;
      }

      return 0;
}

static void
wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
{
      struct wpi_cmd_led led;

      led.which = which;
      led.unit = htole32(100000);   /* on/off in unit of 100ms */
      led.off = off;
      led.on = on;

      (void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
}

static void
wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
{
      struct wpi_cmd_tsf tsf;
      uint64_t val, mod;

      memset(&tsf, 0, sizeof tsf);
      memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
      tsf.bintval = htole16(ni->ni_intval);
      tsf.lintval = htole16(10);

      /* compute remaining time until next beacon */
      val = (uint64_t)ni->ni_intval  * 1024;    /* msec -> usec */
      mod = le64toh(tsf.tstamp) % val;
      tsf.binitval = htole32((uint32_t)(val - mod));

      if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
            device_printf(sc->sc_dev, "could not enable TSF\n");
}

#if 0
/*
 * Build a beacon frame that the firmware will broadcast periodically in
 * IBSS or HostAP modes.
 */
static int
wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
{
      struct ieee80211com *ic = &sc->sc_ic;
      struct wpi_tx_ring *ring = &sc->cmdq;
      struct wpi_tx_desc *desc;
      struct wpi_tx_data *data;
      struct wpi_tx_cmd *cmd;
      struct wpi_cmd_beacon *bcn;
      struct ieee80211_beacon_offsets bo;
      struct mbuf *m0;
      bus_addr_t physaddr;
      int error;

      desc = &ring->desc[ring->cur];
      data = &ring->data[ring->cur];

      m0 = ieee80211_beacon_alloc(ic, ni, &bo);
      if (m0 == NULL) {
            device_printf(sc->sc_dev, "could not allocate beacon frame\n");
            return ENOMEM;
      }

      cmd = &ring->cmd[ring->cur];
      cmd->code = WPI_CMD_SET_BEACON;
      cmd->flags = 0;
      cmd->qid = ring->qid;
      cmd->idx = ring->cur;

      bcn = (struct wpi_cmd_beacon *)cmd->data;
      memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
      bcn->id = WPI_ID_BROADCAST;
      bcn->ofdm_mask = 0xff;
      bcn->cck_mask = 0x0f;
      bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
      bcn->len = htole16(m0->m_pkthdr.len);
      bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
            wpi_plcp_signal(12) : wpi_plcp_signal(2);
      bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);

      /* save and trim IEEE802.11 header */
      m_copydata(m0, 0, sizeof (struct ieee80211_frame), (caddr_t)&bcn->wh);
      m_adj(m0, sizeof (struct ieee80211_frame));

      /* assume beacon frame is contiguous */
      error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m0, void *),
          m0->m_pkthdr.len, wpi_dma_map_addr, &physaddr, 0);
      if (error != 0) {
            device_printf(sc->sc_dev, "could not map beacon\n");
            m_freem(m0);
            return error;
      }

      data->m = m0;

      /* first scatter/gather segment is used by the beacon command */
      desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
      desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
            ring->cur * sizeof (struct wpi_tx_cmd));
      desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_beacon));
      desc->segs[1].addr = htole32(physaddr);
      desc->segs[1].len  = htole32(m0->m_pkthdr.len);

      /* kick cmd ring */
      ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
      WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);

      return 0;
}
#endif

static int
wpi_auth(struct wpi_softc *sc)
{
      struct ieee80211com *ic = &sc->sc_ic;
      struct ieee80211_node *ni = ic->ic_bss;
      struct wpi_node_info node;
      int error;

      /* update adapter's configuration */
      IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
      sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
      if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
            sc->config.flags |= htole32(WPI_CONFIG_AUTO |
                WPI_CONFIG_24GHZ);
      }
      switch (ic->ic_curmode) {
      case IEEE80211_MODE_11A:
            sc->config.cck_mask  = 0;
            sc->config.ofdm_mask = 0x15;
            break;
      case IEEE80211_MODE_11B:
            sc->config.cck_mask  = 0x03;
            sc->config.ofdm_mask = 0;
            break;
      default:    /* assume 802.11b/g */
            sc->config.cck_mask  = 0x0f;
            sc->config.ofdm_mask = 0x15;
      }

      DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
            sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
      error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
            sizeof (struct wpi_config), 1);
      if (error != 0) {
            device_printf(sc->sc_dev, "could not configure\n");
            return error;
      }

      /* configuration has changed, set Tx power accordingly */
      if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
            device_printf(sc->sc_dev, "could not set Tx power\n");
            return error;
      }

      /* add default node */
      memset(&node, 0, sizeof node);
      IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
      node.id = WPI_ID_BSS;
      node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
          wpi_plcp_signal(12) : wpi_plcp_signal(2);
      node.action = htole32(WPI_ACTION_SET_RATE);
      node.antenna = WPI_ANTENNA_BOTH;
      error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
      if (error != 0) {
            device_printf(sc->sc_dev, "could not add BSS node\n");
            return error;
      }

      sc->flags &= ~WPI_FLAG_AUTH;

      return 0;
}

/*
 * Send a scan request to the firmware.  Since this command is huge, we map it
 * into a mbufcluster instead of using the pre-allocated set of commands. Note,
 * much of this code is similar to that in wpi_cmd but because we must manually
 * construct the probe & channels, we duplicate what's needed here. XXX In the
 * future, this function should be modified to use wpi_cmd to help cleanup the
 * code base.
 */
static int
wpi_scan(struct wpi_softc *sc)
{
      struct ieee80211com *ic = &sc->sc_ic;
      struct wpi_tx_ring *ring = &sc->cmdq;
      struct wpi_tx_desc *desc;
      struct wpi_tx_data *data;
      struct wpi_tx_cmd *cmd;
      struct wpi_scan_hdr *hdr;
      struct wpi_scan_chan *chan;
      struct ieee80211_frame *wh;
      struct ieee80211_rateset *rs;
      struct ieee80211_channel *c;
      enum ieee80211_phymode mode;
      uint8_t *frm;
      int nrates, pktlen, error;
      bus_addr_t physaddr;
      struct ifnet *ifp = ic->ic_ifp;

      desc = &ring->desc[ring->cur];
      data = &ring->data[ring->cur];

      data->m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
      if (data->m == NULL) {
            device_printf(sc->sc_dev,
                "could not allocate mbuf for scan command\n");
            return ENOMEM;
      }

      cmd = mtod(data->m, struct wpi_tx_cmd *);
      cmd->code = WPI_CMD_SCAN;
      cmd->flags = 0;
      cmd->qid = ring->qid;
      cmd->idx = ring->cur;

      hdr = (struct wpi_scan_hdr *)cmd->data;
      memset(hdr, 0, sizeof(struct wpi_scan_hdr));

      /*
       * Move to the next channel if no packets are received within 5 msecs
       * after sending the probe request (this helps to reduce the duration
       * of active scans).
       */
      hdr->quiet = htole16(5);
      hdr->threshold = htole16(1);

      if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) {
            /* send probe requests at 6Mbps */
            hdr->tx.rate = wpi_ridx_to_plcp[WPI_OFDM6];

            /* Enable crc checking */
            hdr->promotion = htole16(1);
      } else {
            hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
            /* send probe requests at 1Mbps */
            hdr->tx.rate = wpi_ridx_to_plcp[WPI_CCK1];
      }
      hdr->tx.id = WPI_ID_BROADCAST;
      hdr->tx.lifetime = htole32(WPI_LIFETIME_INFINITE);
      hdr->tx.flags = htole32(WPI_TX_AUTO_SEQ);

      /*XXX Need to cater for multiple essids */
      memset(&hdr->scan_essids[0], 0, 4 * sizeof(hdr->scan_essids[0]));
      hdr->scan_essids[0].id = IEEE80211_ELEMID_SSID;
      hdr->scan_essids[0].esslen = ic->ic_des_ssid[0].len;
      memcpy(hdr->scan_essids[0].essid, ic->ic_des_ssid[0].ssid,
          ic->ic_des_ssid[0].len);

      if (wpi_debug & WPI_DEBUG_SCANNING) {
            printf("Scanning Essid: ");
            ieee80211_print_essid(ic->ic_des_ssid[0].ssid,
                ic->ic_des_ssid[0].len);
            printf("\n");
      }

      /*
       * Build a probe request frame.  Most of the following code is a
       * copy & paste of what is done in net80211.
       */
      wh = (struct ieee80211_frame *)&hdr->scan_essids[4];
      wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
            IEEE80211_FC0_SUBTYPE_PROBE_REQ;
      wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
      IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
      IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
      IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
      *(u_int16_t *)&wh->i_dur[0] = 0;    /* filled by h/w */
      *(u_int16_t *)&wh->i_seq[0] = 0;    /* filled by h/w */

      frm = (uint8_t *)(wh + 1);

      /* add essid IE, the hardware will fill this in for us */
      *frm++ = IEEE80211_ELEMID_SSID;
      *frm++ = 0;

      mode = ieee80211_chan2mode(ic->ic_curchan);
      rs = &ic->ic_sup_rates[mode];

      /* add supported rates IE */
      *frm++ = IEEE80211_ELEMID_RATES;
      nrates = rs->rs_nrates;
      if (nrates > IEEE80211_RATE_SIZE)
            nrates = IEEE80211_RATE_SIZE;
      *frm++ = nrates;
      memcpy(frm, rs->rs_rates, nrates);
      frm += nrates;

      /* add supported xrates IE */
      if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
            nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
            *frm++ = IEEE80211_ELEMID_XRATES;
            *frm++ = nrates;
            memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
            frm += nrates;
      }

      /* setup length of probe request */
      hdr->tx.len = htole16(frm - (uint8_t *)wh);

      /*
       * Construct information about the channel that we
       * want to scan. The firmware expects this to be directly
       * after the scan probe request
       */
      c = ic->ic_curchan;
      chan = (struct wpi_scan_chan *)frm;
      chan->chan = ieee80211_chan2ieee(ic, c);
      chan->flags = 0;
      if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
            chan->flags |= WPI_CHAN_ACTIVE;
            if (ic->ic_des_ssid[0].len != 0)
                  chan->flags |= WPI_CHAN_DIRECT;
      }
      chan->gain_dsp = 0x6e; /* Default level */
      if (IEEE80211_IS_CHAN_5GHZ(c)) {
            chan->active = htole16(10);
            chan->passive = htole16(sc->maxdwell);
            chan->gain_radio = 0x3b;
      } else {
            chan->active = htole16(20);
            chan->passive = htole16(sc->maxdwell);
            chan->gain_radio = 0x28;
      }

      DPRINTFN(WPI_DEBUG_SCANNING,
          ("Scanning %u Passive: %d\n",
           chan->chan,
           c->ic_flags & IEEE80211_CHAN_PASSIVE));

      hdr->nchan++;
      chan++;

      frm += sizeof (struct wpi_scan_chan);
#if 0
      // XXX All Channels....
      for (c  = &ic->ic_channels[1];
           c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
            if ((c->ic_flags & ic->ic_curchan->ic_flags) != ic->ic_curchan->ic_flags)
                  continue;

            chan->chan = ieee80211_chan2ieee(ic, c);
            chan->flags = 0;
            if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
                chan->flags |= WPI_CHAN_ACTIVE;
                if (ic->ic_des_ssid[0].len != 0)
                  chan->flags |= WPI_CHAN_DIRECT;
            }
            chan->gain_dsp = 0x6e; /* Default level */
            if (IEEE80211_IS_CHAN_5GHZ(c)) {
                  chan->active = htole16(10);
                  chan->passive = htole16(110);
                  chan->gain_radio = 0x3b;
            } else {
                  chan->active = htole16(20);
                  chan->passive = htole16(120);
                  chan->gain_radio = 0x28;
            }

            DPRINTFN(WPI_DEBUG_SCANNING,
                   ("Scanning %u Passive: %d\n",
                    chan->chan,
                    c->ic_flags & IEEE80211_CHAN_PASSIVE));

            hdr->nchan++;
            chan++;

            frm += sizeof (struct wpi_scan_chan);
      }
#endif

      hdr->len = htole16(frm - (uint8_t *)hdr);
      pktlen = frm - (uint8_t *)cmd;

      error = bus_dmamap_load(ring->data_dmat, data->map, cmd, pktlen,
          wpi_dma_map_addr, &physaddr, BUS_DMA_NOWAIT);
      if (error != 0) {
            device_printf(sc->sc_dev, "could not map scan command\n");
            m_freem(data->m);
            data->m = NULL;
            return error;
      }

      desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
      desc->segs[0].addr = htole32(physaddr);
      desc->segs[0].len  = htole32(pktlen);

      bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
          BUS_DMASYNC_PREWRITE);
      bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);

      /* kick cmd ring */
      ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
      WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);

      return 0;   /* will be notified async. of failure/success */
}

/**
 * Configure the card to listen to a particular channel, this transisions the
 * card in to being able to receive frames from remote devices.
 */
static int
wpi_config(struct wpi_softc *sc)
{
      struct ieee80211com *ic = &sc->sc_ic;
      struct ifnet *ifp = ic->ic_ifp;
      struct wpi_power power;
      struct wpi_bluetooth bluetooth;
      struct wpi_node_info node;
      int error;

      /* set power mode */
      memset(&power, 0, sizeof power);
      power.flags = htole32(WPI_POWER_CAM|0x8);
      error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
      if (error != 0) {
            device_printf(sc->sc_dev, "could not set power mode\n");
            return error;
      }

      /* configure bluetooth coexistence */
      memset(&bluetooth, 0, sizeof bluetooth);
      bluetooth.flags = 3;
      bluetooth.lead = 0xaa;
      bluetooth.kill = 1;
      error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
          0);
      if (error != 0) {
            device_printf(sc->sc_dev,
                "could not configure bluetooth coexistence\n");
            return error;
      }

      /* configure adapter */
      memset(&sc->config, 0, sizeof (struct wpi_config));
      IEEE80211_ADDR_COPY(sc->config.myaddr, ic->ic_myaddr);
      /*set default channel*/
      sc->config.chan = htole16(ieee80211_chan2ieee(ic, ic->ic_curchan));
      sc->config.flags = htole32(WPI_CONFIG_TSF);
      if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
            sc->config.flags |= htole32(WPI_CONFIG_AUTO |
                WPI_CONFIG_24GHZ);
      }
      sc->config.filter = 0;
      switch (ic->ic_opmode) {
      case IEEE80211_M_STA:
      case IEEE80211_M_WDS:   /* No know setup, use STA for now */
            sc->config.mode = WPI_MODE_STA;
            sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
            break;
      case IEEE80211_M_IBSS:
      case IEEE80211_M_AHDEMO:
            sc->config.mode = WPI_MODE_IBSS;
            sc->config.filter |= htole32(WPI_FILTER_BEACON |
                                   WPI_FILTER_MULTICAST);
            break;
      case IEEE80211_M_HOSTAP:
            sc->config.mode = WPI_MODE_HOSTAP;
            break;
      case IEEE80211_M_MONITOR:
            sc->config.mode = WPI_MODE_MONITOR;
            sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
                  WPI_FILTER_CTL | WPI_FILTER_PROMISC);
            break;
      }
      sc->config.cck_mask  = 0x0f;  /* not yet negotiated */
      sc->config.ofdm_mask = 0xff;  /* not yet negotiated */
      error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
            sizeof (struct wpi_config), 0);
      if (error != 0) {
            device_printf(sc->sc_dev, "configure command failed\n");
            return error;
      }

      /* configuration has changed, set Tx power accordingly */
      if ((error = wpi_set_txpower(sc, ic->ic_curchan,0)) != 0) {
          device_printf(sc->sc_dev, "could not set Tx power\n");
          return error;
      }

      /* add broadcast node */
      memset(&node, 0, sizeof node);
      IEEE80211_ADDR_COPY(node.bssid, ifp->if_broadcastaddr);
      node.id = WPI_ID_BROADCAST;
      node.rate = wpi_plcp_signal(2);
      error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
      if (error != 0) {
            device_printf(sc->sc_dev, "could not add broadcast node\n");
            return error;
      }

      /* Setup rate scalling */
      error = wpi_mrr_setup(sc);
      if (error != 0) {
            device_printf(sc->sc_dev, "could not setup MRR\n");
            return error;
      }

      return 0;
}

static void
wpi_stop_master(struct wpi_softc *sc)
{
      uint32_t tmp;
      int ntries;

      DPRINTFN(WPI_DEBUG_HW,("Disabling Firmware execution\n"));

      tmp = WPI_READ(sc, WPI_RESET);
      WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER | WPI_NEVO_RESET);

      tmp = WPI_READ(sc, WPI_GPIO_CTL);
      if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
            return;     /* already asleep */

      for (ntries = 0; ntries < 100; ntries++) {
            if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
                  break;
            DELAY(10);
      }
      if (ntries == 100) {
            device_printf(sc->sc_dev, "timeout waiting for master\n");
      }
}

static int
wpi_power_up(struct wpi_softc *sc)
{
      uint32_t tmp;
      int ntries;

      wpi_mem_lock(sc);
      tmp = wpi_mem_read(sc, WPI_MEM_POWER);
      wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
      wpi_mem_unlock(sc);

      for (ntries = 0; ntries < 5000; ntries++) {
            if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
                  break;
            DELAY(10);
      }
      if (ntries == 5000) {
            device_printf(sc->sc_dev,
                "timeout waiting for NIC to power up\n");
            return ETIMEDOUT;
      }
      return 0;
}

static int
wpi_reset(struct wpi_softc *sc)
{
      uint32_t tmp;
      int ntries;

      DPRINTFN(WPI_DEBUG_HW,
          ("Resetting the card - clearing any uploaded firmware\n"));

      /* clear any pending interrupts */
      WPI_WRITE(sc, WPI_INTR, 0xffffffff);

      tmp = WPI_READ(sc, WPI_PLL_CTL);
      WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);

      tmp = WPI_READ(sc, WPI_CHICKEN);
      WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);

      tmp = WPI_READ(sc, WPI_GPIO_CTL);
      WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);

      /* wait for clock stabilization */
      for (ntries = 0; ntries < 25000; ntries++) {
            if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
                  break;
            DELAY(10);
      }
      if (ntries == 25000) {
            device_printf(sc->sc_dev,
                "timeout waiting for clock stabilization\n");
            return ETIMEDOUT;
      }

      /* initialize EEPROM */
      tmp = WPI_READ(sc, WPI_EEPROM_STATUS);

      if ((tmp & WPI_EEPROM_VERSION) == 0) {
            device_printf(sc->sc_dev, "EEPROM not found\n");
            return EIO;
      }
      WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);

      return 0;
}

static void
wpi_hw_config(struct wpi_softc *sc)
{
      uint32_t rev, hw;

      /* voodoo from the Linux "driver".. */
      hw = WPI_READ(sc, WPI_HWCONFIG);

      rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1);
      if ((rev & 0xc0) == 0x40)
            hw |= WPI_HW_ALM_MB;
      else if (!(rev & 0x80))
            hw |= WPI_HW_ALM_MM;

      if (sc->cap == 0x80)
            hw |= WPI_HW_SKU_MRC;

      hw &= ~WPI_HW_REV_D;
      if ((le16toh(sc->rev) & 0xf0) == 0xd0)
            hw |= WPI_HW_REV_D;

      if (sc->type > 1)
            hw |= WPI_HW_TYPE_B;

      WPI_WRITE(sc, WPI_HWCONFIG, hw);
}

static void
wpi_init(void *arg)
{
      struct wpi_softc *sc = arg;
      struct ieee80211com *ic = &sc->sc_ic;
      struct ifnet *ifp = ic->ic_ifp;
      uint32_t tmp;
      int ntries, error, qid;
      WPI_LOCK_DECL;

      WPI_LOCK(sc);

      wpi_stop_locked(sc);
      (void)wpi_reset(sc);

      wpi_mem_lock(sc);
      wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
      DELAY(20);
      tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
      wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
      wpi_mem_unlock(sc);

      (void)wpi_power_up(sc);
      wpi_hw_config(sc);

      /* init Rx ring */
      wpi_mem_lock(sc);
      WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
      WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
          offsetof(struct wpi_shared, next));
      WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
      WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
      wpi_mem_unlock(sc);

      /* init Tx rings */
      wpi_mem_lock(sc);
      wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
      wpi_mem_write(sc, WPI_MEM_RA, 1);   /* enable RA0 */
      wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
      wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
      wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
      wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
      wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);

      WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
      WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);

      for (qid = 0; qid < 6; qid++) {
            WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
            WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
            WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
      }
      wpi_mem_unlock(sc);

      /* clear "radio off" and "disable command" bits (reversed logic) */
      WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
      WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
      sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;

      /* clear any pending interrupts */
      WPI_WRITE(sc, WPI_INTR, 0xffffffff);

      /* enable interrupts */
      WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);

      WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
      WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);

      if ((error = wpi_load_firmware(sc)) != 0) {
          device_printf(sc->sc_dev,
            "A problem occurred loading the firmware to the driver\n");
          return;
      }

      /* At this point the firmware is up and running. If the hardware
       * RF switch is turned off thermal calibration will fail, though
       * the card is still happy to continue to accept commands, catch
       * this case and record the hw is disabled.
       */
      wpi_mem_lock(sc);
      tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
      wpi_mem_unlock(sc);

      if (!(tmp & 0x1)) {
            sc->flags |= WPI_FLAG_HW_RADIO_OFF;
            ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
            ifp->if_drv_flags |= IFF_DRV_RUNNING;
            device_printf(sc->sc_dev,"Radio Transmitter is switched off\n");
            return;
      }

      /* wait for thermal sensors to calibrate */
      for (ntries = 0; ntries < 1000; ntries++) {
            if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
                  break;
            DELAY(10);
      }

      if (ntries == 1000) {
            device_printf(sc->sc_dev,
                "timeout waiting for thermal sensors calibration\n");
            error = ETIMEDOUT;
            return;
      }
      DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));

      ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
      ifp->if_drv_flags |= IFF_DRV_RUNNING;
      callout_reset(&sc->watchdog_to, hz, wpi_tick, sc);
      WPI_UNLOCK(sc);

      if (ic->ic_opmode == IEEE80211_M_MONITOR)
            ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
      else if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
            ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
}

static void
wpi_stop(struct wpi_softc *sc)
{
      WPI_LOCK_DECL;

      WPI_LOCK(sc);
      wpi_stop_locked(sc);
      WPI_UNLOCK(sc);

}
static void
wpi_stop_locked(struct wpi_softc *sc)

{
      struct ieee80211com *ic = &sc->sc_ic;
      struct ifnet *ifp = ic->ic_ifp;
      uint32_t tmp;
      int ac;

      sc->watchdog_cnt = sc->sc_tx_timer = 0;
      ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);

      /* disable interrupts */
      WPI_WRITE(sc, WPI_MASK, 0);
      WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
      WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
      WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);

      /* Clear any commands left in the command buffer */
      memset(sc->sc_cmd, 0, sizeof(sc->sc_cmd));

      wpi_mem_lock(sc);
      wpi_mem_write(sc, WPI_MEM_MODE, 0);
      wpi_mem_unlock(sc);

      /* reset all Tx rings */
      for (ac = 0; ac < 4; ac++)
            wpi_reset_tx_ring(sc, &sc->txq[ac]);
      wpi_reset_tx_ring(sc, &sc->cmdq);

      /* reset Rx ring */
      wpi_reset_rx_ring(sc, &sc->rxq);

      wpi_mem_lock(sc);
      wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
      wpi_mem_unlock(sc);

      DELAY(5);

      wpi_stop_master(sc);

      tmp = WPI_READ(sc, WPI_RESET);
      WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
      sc->flags &= ~WPI_FLAG_BUSY;

      ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
}

static void
wpi_iter_func(void *arg, struct ieee80211_node *ni)
{
      struct wpi_softc *sc = arg;
      struct wpi_node *wn = (struct wpi_node *)ni;

      ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
}

static void
wpi_newassoc(struct ieee80211_node *ni, int isnew)
{
      struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
      int i;

      ieee80211_amrr_node_init(&sc->amrr, &((struct wpi_node *)ni)->amn);

      for (i = ni->ni_rates.rs_nrates - 1;
          i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
          i--);
      ni->ni_txrate = i;
}

static void
wpi_calib_timeout(void *arg)
{
      struct wpi_softc *sc = arg;
      struct ieee80211com *ic = &sc->sc_ic;
      int temp;
      WPI_LOCK_DECL;

      /* automatic rate control triggered every 500ms */
      if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) {
            WPI_LOCK(sc);
            if (ic->ic_opmode == IEEE80211_M_STA)
                  wpi_iter_func(sc, ic->ic_bss);
            else
                  ieee80211_iterate_nodes(&ic->ic_sta, wpi_iter_func, sc);
            WPI_UNLOCK(sc);
      }

      /* update sensor data */
      temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
      DPRINTFN(WPI_DEBUG_TEMP,("Temp in calibration is: %d\n", temp));
#if 0
      //XXX Used by OpenBSD Sensor Framework
      sc->sensor.value = temp + 260;
#endif

      /* automatic power calibration every 60s */
      if (++sc->calib_cnt >= 120) {
            wpi_power_calibration(sc, temp);
            sc->calib_cnt = 0;
      }

      callout_reset(&sc->calib_to, hz/2, wpi_calib_timeout, sc);
}

/*
 * This function is called periodically (every 60 seconds) to adjust output
 * power to temperature changes.
 */
static void
wpi_power_calibration(struct wpi_softc *sc, int temp)
{
      /* sanity-check read value */
      if (temp < -260 || temp > 25) {
            /* this can't be correct, ignore */
            DPRINTFN(WPI_DEBUG_TEMP,
                ("out-of-range temperature reported: %d\n", temp));
            return;
      }

      DPRINTFN(WPI_DEBUG_TEMP,("temperature %d->%d\n", sc->temp, temp));

      /* adjust Tx power if need be */
      if (abs(temp - sc->temp) <= 6)
            return;

      sc->temp = temp;

      if (wpi_set_txpower(sc, sc->sc_ic.ic_bss->ni_chan,1) != 0) {
            /* just warn, too bad for the automatic calibration... */
            device_printf(sc->sc_dev,"could not adjust Tx power\n");
      }
}

/**
 * Read the eeprom to find out what channels are valid for the given
 * band and update net80211 with what we find.
 */
static void
wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
{
      struct ieee80211com *ic = &sc->sc_ic;
      const struct wpi_chan_band *band = &wpi_bands[n];
      struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
      int chan, i, offset, passive;

      wpi_read_prom_data(sc, band->addr, channels,
          band->nchan * sizeof (struct wpi_eeprom_chan));

      for (i = 0; i < band->nchan; i++) {
            if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) {
                  DPRINTFN(WPI_DEBUG_HW,
                      ("Channel Not Valid: %d, band %d\n",
                       band->chan[i],n));
                  continue;
            }

            passive = 0;
            chan = band->chan[i];
            offset = ic->ic_nchans;

            /* is active scan allowed on this channel? */
            if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
                  passive = IEEE80211_CHAN_PASSIVE;
            }

            if (n == 0) {     /* 2GHz band */
                  ic->ic_channels[offset].ic_ieee = chan;
                  ic->ic_channels[offset].ic_freq =
                  ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
                  ic->ic_channels[offset].ic_flags = IEEE80211_CHAN_B | passive;
                  offset++;
                  ic->ic_channels[offset].ic_ieee = chan;
                  ic->ic_channels[offset].ic_freq =
                  ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
                  ic->ic_channels[offset].ic_flags = IEEE80211_CHAN_G | passive;
                  offset++;

            } else {    /* 5GHz band */
                  /*
                   * Some 3945ABG adapters support channels 7, 8, 11
                   * and 12 in the 2GHz *and* 5GHz bands.
                   * Because of limitations in our net80211(9) stack,
                   * we can't support these channels in 5GHz band.
                   * XXX not true; just need to map to proper frequency
                   */
                  if (chan <= 14)
                        continue;

                  ic->ic_channels[offset].ic_ieee = chan;
                  ic->ic_channels[offset].ic_freq =
                  ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
                  ic->ic_channels[offset].ic_flags = IEEE80211_CHAN_A | passive;
                  offset++;
            }

            /* save maximum allowed power for this channel */
            sc->maxpwr[chan] = channels[i].maxpwr;

            ic->ic_nchans = offset;

#if 0
            // XXX We can probably use this an get rid of maxpwr - ben 20070617
            ic->ic_channels[chan].ic_maxpower = channels[i].maxpwr;
            //ic->ic_channels[chan].ic_minpower...
            //ic->ic_channels[chan].ic_maxregtxpower...
#endif

            DPRINTF(("adding chan %d flags=0x%x maxpwr=%d, offset %d\n",
                      chan, channels[i].flags, sc->maxpwr[chan], offset));
      }
}

static void
wpi_read_eeprom_group(struct wpi_softc *sc, int n)
{
      struct wpi_power_group *group = &sc->groups[n];
      struct wpi_eeprom_group rgroup;
      int i;

      wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
          sizeof rgroup);

      /* save power group information */
      group->chan   = rgroup.chan;
      group->maxpwr = rgroup.maxpwr;
      /* temperature at which the samples were taken */
      group->temp   = (int16_t)le16toh(rgroup.temp);

      DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
                group->chan, group->maxpwr, group->temp));

      for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
            group->samples[i].index = rgroup.samples[i].index;
            group->samples[i].power = rgroup.samples[i].power;

            DPRINTF(("\tsample %d: index=%d power=%d\n", i,
                      group->samples[i].index, group->samples[i].power));
      }
}

/*
 * Update Tx power to match what is defined for channel `c'.
 */
static int
wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
{
      struct ieee80211com *ic = &sc->sc_ic;
      struct wpi_power_group *group;
      struct wpi_cmd_txpower txpower;
      u_int chan;
      int i;

      /* get channel number */
      chan = ieee80211_chan2ieee(ic, c);

      /* find the power group to which this channel belongs */
      if (IEEE80211_IS_CHAN_5GHZ(c)) {
            for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
                  if (chan <= group->chan)
                        break;
      } else
            group = &sc->groups[0];

      memset(&txpower, 0, sizeof txpower);
      txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
      txpower.channel = htole16(chan);

      /* set Tx power for all OFDM and CCK rates */
      for (i = 0; i <= 11 ; i++) {
            /* retrieve Tx power for this channel/rate combination */
            int idx = wpi_get_power_index(sc, group, c,
                wpi_ridx_to_rate[i]);

            txpower.rates[i].rate = wpi_ridx_to_plcp[i];

            if (IEEE80211_IS_CHAN_5GHZ(c)) {
                  txpower.rates[i].gain_radio = wpi_rf_gain_5ghz[idx];
                  txpower.rates[i].gain_dsp = wpi_dsp_gain_5ghz[idx];
            } else {
                  txpower.rates[i].gain_radio = wpi_rf_gain_2ghz[idx];
                  txpower.rates[i].gain_dsp = wpi_dsp_gain_2ghz[idx];
            }
            DPRINTFN(WPI_DEBUG_TEMP,("chan %d/rate %d: power index %d\n",
                      chan, wpi_ridx_to_rate[i], idx));
      }

      return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
}

/*
 * Determine Tx power index for a given channel/rate combination.
 * This takes into account the regulatory information from EEPROM and the
 * current temperature.
 */
static int
wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
    struct ieee80211_channel *c, int rate)
{
/* fixed-point arithmetic division using a n-bit fractional part */
#define fdivround(a, b, n)      \
      ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))

/* linear interpolation */
#define interpolate(x, x1, y1, x2, y2, n)       \
      ((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))

      struct ieee80211com *ic = &sc->sc_ic;
      struct wpi_power_sample *sample;
      int pwr, idx;
      u_int chan;

      /* get channel number */
      chan = ieee80211_chan2ieee(ic, c);

      /* default power is group's maximum power - 3dB */
      pwr = group->maxpwr / 2;

      /* decrease power for highest OFDM rates to reduce distortion */
      switch (rate) {
            case 72:    /* 36Mb/s */
                  pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
                  break;
            case 96:    /* 48Mb/s */
                  pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
                  break;
            case 108:   /* 54Mb/s */
                  pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
                  break;
      }

      /* never exceed channel's maximum allowed Tx power */
      pwr = min(pwr, sc->maxpwr[chan]);

      /* retrieve power index into gain tables from samples */
      for (sample = group->samples; sample < &group->samples[3]; sample++)
            if (pwr > sample[1].power)
                  break;
      /* fixed-point linear interpolation using a 19-bit fractional part */
      idx = interpolate(pwr, sample[0].power, sample[0].index,
          sample[1].power, sample[1].index, 19);

      /*
       *  Adjust power index based on current temperature
       *    - if colder than factory-calibrated: decreate output power
       *    - if warmer than factory-calibrated: increase output power
       */
      idx -= (sc->temp - group->temp) * 11 / 100;

      /* decrease power for CCK rates (-5dB) */
      if (!WPI_RATE_IS_OFDM(rate))
            idx += 10;

      /* keep power index in a valid range */
      if (idx < 0)
            return 0;
      if (idx > WPI_MAX_PWR_INDEX)
            return WPI_MAX_PWR_INDEX;
      return idx;

#undef interpolate
#undef fdivround
}

#if 0
static void
wpi_radio_on(void *arg, int pending)
{
      struct wpi_softc *sc = arg;

      device_printf(sc->sc_dev, "radio turned on\n");
}

static void
wpi_radio_off(void *arg, int pending)
{
      struct wpi_softc *sc = arg;

      device_printf(sc->sc_dev, "radio turned off\n");
}
#endif

/**
 * Called by net80211 framework to indicate that a scan
 * is starting. This function doesn't actually do the scan,
 * wpi_scan_curchan starts things off. This function is more
 * of an early warning from the framework we should get ready
 * for the scan.
 */
static void
wpi_scan_start(struct ieee80211com *ic)
{
      struct ifnet *ifp = ic->ic_ifp;
      struct wpi_softc *sc = ifp->if_softc;

      wpi_queue_cmd(sc, WPI_SCAN_START);
}

/**
 * Called by the net80211 framework, indicates that the
 * scan has ended. If there is a scan in progress on the card
 * then it should be aborted.
 */
static void
wpi_scan_end(struct ieee80211com *ic)
{
      struct ifnet *ifp = ic->ic_ifp;
      struct wpi_softc *sc = ifp->if_softc;

      wpi_queue_cmd(sc, WPI_SCAN_STOP);
}

/**
 * Called by the net80211 framework to indicate to the driver
 * that the channel should be changed
 */
static void
wpi_set_channel(struct ieee80211com *ic)
{
      struct ifnet *ifp = ic->ic_ifp;
      struct wpi_softc *sc = ifp->if_softc;

      wpi_queue_cmd(sc, WPI_SET_CHAN);
}

/**
 * Called by net80211 to indicate that we need to scan the current
 * channel. The channel is previously be set via the wpi_set_channel
 * callback.
 */
static void
wpi_scan_curchan(struct ieee80211com *ic, unsigned long maxdwell)
{
      struct ifnet *ifp = ic->ic_ifp;
      struct wpi_softc *sc = ifp->if_softc;

      sc->maxdwell = maxdwell;

      wpi_queue_cmd(sc, WPI_SCAN_CURCHAN);
}

/**
 * Called by the net80211 framework to indicate
 * the minimum dwell time has been met, terminate the scan.
 * We don't actually terminate the scan as the firmware will notify
 * us when it's finished and we have no way to interrupt it.
 */
static void
wpi_scan_mindwell(struct ieee80211com *ic)
{
      /* NB: don't try to abort scan; wait for firmware to finish */
}

/**
 * The ops function is called to perform some actual work.
 * because we can't sleep from any of the ic callbacks, we queue an
 * op task with wpi_queue_cmd and have the taskqueue process that task.
 * The task that gets cued is a op task, which ends up calling this function.
 */
static void
wpi_ops(void *arg, int pending)
{
      struct wpi_softc *sc = arg;
      struct ieee80211com *ic = &sc->sc_ic;
      WPI_LOCK_DECL;
      int cmd;

again:
      WPI_CMD_LOCK(sc);
      cmd = sc->sc_cmd[sc->sc_cmd_cur];

      if (cmd == 0) {
            /* No more commands to process */
            WPI_CMD_UNLOCK(sc);
            return;
      }
      sc->sc_cmd[sc->sc_cmd_cur] = 0; /* free the slot */
      sc->sc_cmd_cur = (sc->sc_cmd_cur + 1) % WPI_CMD_MAXOPS;
      WPI_CMD_UNLOCK(sc);
      WPI_LOCK(sc);

      if (!(sc->sc_ifp->if_drv_flags & IFF_DRV_RUNNING)) {
            WPI_UNLOCK(sc);
            return;
      }

      {
      const char *name[]={"SCAN_START", "SCAN_CURCHAN",0,"STOP",0,0,0,"CHAN",
            0,0,0,0,0,0,"AUTH",0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,"NEXT"};
      DPRINTFN(WPI_DEBUG_OPS,("wpi_ops: command: %d %s\n", cmd, name[cmd-1]));
      }

      switch (cmd) {
      case WPI_SCAN_START:
            if (sc->flags & WPI_FLAG_HW_RADIO_OFF) {
                  DPRINTF(("HERER\n"));
                  ieee80211_cancel_scan(ic);
            } else
                  sc->flags |= WPI_FLAG_SCANNING;
            break;

      case WPI_SCAN_STOP:
            sc->flags &= ~WPI_FLAG_SCANNING;
            break;

      case WPI_SCAN_NEXT:
            DPRINTF(("NEXT\n"));
            WPI_UNLOCK(sc);
            ieee80211_scan_next(ic);
            WPI_LOCK(sc);
            break;

      case WPI_SCAN_CURCHAN:
            if (wpi_scan(sc))
                  ieee80211_cancel_scan(ic);
            break;

      case WPI_SET_CHAN:
            if (sc->flags&WPI_FLAG_AUTH) {
                  DPRINTF(("Authenticating, not changing channel\n"));
                  break;
            }
            if (wpi_config(sc)) {
                  DPRINTF(("Scan cancelled\n"));
                  WPI_UNLOCK(sc);
                  ieee80211_cancel_scan(ic);
                  WPI_LOCK(sc);
                  sc->flags &= ~WPI_FLAG_SCANNING;
                  wpi_restart(sc,0);
                  WPI_UNLOCK(sc);
                  return;
            }
            break;

      case WPI_AUTH:
            if (wpi_auth(sc) != 0) {
                  device_printf(sc->sc_dev,
                      "could not send authentication request\n");
                  wpi_stop_locked(sc);
                  WPI_UNLOCK(sc);
                  return;
            }
            WPI_UNLOCK(sc);
            ieee80211_node_authorize(ic->ic_bss);
            ieee80211_new_state(ic, IEEE80211_S_ASSOC, -1);
            WPI_LOCK(sc);
            break;
      }
      WPI_UNLOCK(sc);

      /* Take another pass */
      goto again;
}

/**
 * queue a command for later execution in a different thread.
 * This is needed as the net80211 callbacks do not allow
 * sleeping, since we need to sleep to confirm commands have
 * been processed by the firmware, we must defer execution to
 * a sleep enabled thread.
 */
static int
wpi_queue_cmd(struct wpi_softc *sc, int cmd)
{
      WPI_CMD_LOCK(sc);

      if (sc->sc_cmd[sc->sc_cmd_next] != 0) {
            WPI_CMD_UNLOCK(sc);
            DPRINTF(("%s: command %d dropped\n", __func__, cmd));
            return (EBUSY);
      }

      sc->sc_cmd[sc->sc_cmd_next] = cmd;
      sc->sc_cmd_next = (sc->sc_cmd_next + 1) % WPI_CMD_MAXOPS;

      taskqueue_enqueue(sc->sc_tq, &sc->sc_opstask);

      WPI_CMD_UNLOCK(sc);

      return 0;
}

static void
wpi_restart(void * arg, int pending)
{
#if 0
      struct wpi_softc *sc = arg;
      struct ieee80211com *ic = &sc->sc_ic;
      WPI_LOCK_DECL;

      DPRINTF(("Device failed, restarting device\n"));
      WPI_LOCK(sc);
      wpi_stop(sc);
      wpi_init(sc);
      WPI_UNLOCK(sc);
      ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
#endif
}

/*
 * Allocate DMA-safe memory for firmware transfer.
 */
static int
wpi_alloc_fwmem(struct wpi_softc *sc)
{
      /* allocate enough contiguous space to store text and data */
      return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL,
          WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 1,
          BUS_DMA_NOWAIT);
}

static void
wpi_free_fwmem(struct wpi_softc *sc)
{
      wpi_dma_contig_free(&sc->fw_dma);
}

/**
 * Called every second, wpi_tick used by the watch dog timer
 * to check that the card is still alive
 */
static void
wpi_tick(void *arg)
{
      struct wpi_softc *sc = arg;

      DPRINTFN(WPI_DEBUG_WATCHDOG,("Watchdog: tick\n"));

      wpi_watchdog(sc->sc_ifp);
      callout_reset(&sc->watchdog_to, hz, wpi_tick, sc);
}

#ifdef WPI_DEBUG
static const char *wpi_cmd_str(int cmd)
{
      switch(cmd) {
            case WPI_DISABLE_CMD:   return "WPI_DISABLE_CMD";
            case WPI_CMD_CONFIGURE: return "WPI_CMD_CONFIGURE";
            case WPI_CMD_ASSOCIATE: return "WPI_CMD_ASSOCIATE";
            case WPI_CMD_SET_WME:   return "WPI_CMD_SET_WME";
            case WPI_CMD_TSF: return "WPI_CMD_TSF";
            case WPI_CMD_ADD_NODE:  return "WPI_CMD_ADD_NODE";
            case WPI_CMD_TX_DATA:   return "WPI_CMD_TX_DATA";
            case WPI_CMD_MRR_SETUP: return "WPI_CMD_MRR_SETUP";
            case WPI_CMD_SET_LED:   return "WPI_CMD_SET_LED";
            case WPI_CMD_SET_POWER_MODE: return "WPI_CMD_SET_POWER_MODE";
            case WPI_CMD_SCAN:      return "WPI_CMD_SCAN";
            case WPI_CMD_SET_BEACON:return "WPI_CMD_SET_BEACON";
            case WPI_CMD_TXPOWER:   return "WPI_CMD_TXPOWER";
            case WPI_CMD_BLUETOOTH: return "WPI_CMD_BLUETOOTH";

            default:
            KASSERT(1, ("Unknown Command: %d\n", cmd));
            return "UNKNOWN CMD"; // Make the compiler happy
      }
}
#endif

MODULE_DEPEND(wpi, pci,  1, 1, 1);
MODULE_DEPEND(wpi, wlan, 1, 1, 1);
MODULE_DEPEND(wpi, firmware, 1, 1, 1);
MODULE_DEPEND(wpi, wlan_amrr, 1, 1, 1);

Generated by  Doxygen 1.6.0   Back to index